Evaluation of the Parameter Sensitivities of a Coupled Land Surface Hydrologic Model at a Critical Zone Observatory

Yuning Shi Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yuning Shi in
Current site
Google Scholar
PubMed
Close
,
Kenneth J. Davis Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kenneth J. Davis in
Current site
Google Scholar
PubMed
Close
,
Fuqing Zhang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Christopher J. Duffy Department of Civil Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Christopher J. Duffy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land surface models (LSMs) and hydrologic models are parameterized models. The number of involved parameters is often large. Sensitivity analysis (SA) is a key step to understand the complex relationships between parameters and between state variables and parameters. SA is also critical to understand system dynamics and to examine the parameter identifiability. In this paper, parameter SA for a fully coupled, physically based, distributed land surface hydrologic model, namely, the Flux–Penn State Integrated Hydrologic Model (Flux–PIHM), is performed. Multiparameter and single-parameter tests are performed to examine the three dimensions of identifiability: distinguishability, observability, and simplicity. Results show that Flux–PIHM model predictions of discharge, water table depth, soil moisture, land surface temperature, and surface heat fluxes are very sensitive to the selection of parameter values. Parameter uncertainties produce large uncertainties in hydrologic and land surface variable predictions. The van Genuchten parameters α and β and the Zilitinkevich parameter Czil are the most identifiable among the 20 tested parameters. Results indicate that the land surface and the subsurface are closely coupled. Hydrologic parameters have significant influence on land surface simulations. At the same time, land surface parameters have considerable impacts on hydrologic simulations; the evapotranspiration prediction prior to a strong precipitation event is critical for initializing accurate prediction of discharge peaks. Results also show that parameter identifiability depends on seasons and canopy wetness. Parameter identifiability at high and low flow conditions can be extremely different. Complex system dynamics have been revealed during the SA.

Corresponding author address: Yuning Shi, Department of Meteorology, 415 Walker Building, The Pennsylvania State University, University Park, PA 16802. E-mail: yshi@psu.edu

Abstract

Land surface models (LSMs) and hydrologic models are parameterized models. The number of involved parameters is often large. Sensitivity analysis (SA) is a key step to understand the complex relationships between parameters and between state variables and parameters. SA is also critical to understand system dynamics and to examine the parameter identifiability. In this paper, parameter SA for a fully coupled, physically based, distributed land surface hydrologic model, namely, the Flux–Penn State Integrated Hydrologic Model (Flux–PIHM), is performed. Multiparameter and single-parameter tests are performed to examine the three dimensions of identifiability: distinguishability, observability, and simplicity. Results show that Flux–PIHM model predictions of discharge, water table depth, soil moisture, land surface temperature, and surface heat fluxes are very sensitive to the selection of parameter values. Parameter uncertainties produce large uncertainties in hydrologic and land surface variable predictions. The van Genuchten parameters α and β and the Zilitinkevich parameter Czil are the most identifiable among the 20 tested parameters. Results indicate that the land surface and the subsurface are closely coupled. Hydrologic parameters have significant influence on land surface simulations. At the same time, land surface parameters have considerable impacts on hydrologic simulations; the evapotranspiration prediction prior to a strong precipitation event is critical for initializing accurate prediction of discharge peaks. Results also show that parameter identifiability depends on seasons and canopy wetness. Parameter identifiability at high and low flow conditions can be extremely different. Complex system dynamics have been revealed during the SA.

Corresponding author address: Yuning Shi, Department of Meteorology, 415 Walker Building, The Pennsylvania State University, University Park, PA 16802. E-mail: yshi@psu.edu
Save
  • Aksoy, A., Zhang F. , and Nielsen-Gammon J. W. , 2006: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 29512970, doi:10.1175/MWR3224.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Diak G. R. , Kustas W. P. , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, doi:10.1016/S0034-4257(96)00215-5.

    • Search Google Scholar
    • Export Citation
  • Anderton, S., Latron J. , and Gallart F. , 2002: Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrol. Processes,16, 333353, doi:10.1002/hyp.336.

    • Search Google Scholar
    • Export Citation
  • Beven, K., 1993: Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour., 16, 4151, doi:10.1016/0309-1708(93)90028-E.

    • Search Google Scholar
    • Export Citation
  • Beven, K., and Binley A. , 1992: The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Processes,6, 279298, doi:10.1002/hyp.3360060305.

    • Search Google Scholar
    • Export Citation
  • Bras, R. L., 1990: Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Cammalleri, C., and Ciraolo G. , 2012: State and parameters update in a coupled energy/hydrologic balance model using ensemble Kalman filtering. J. Hydrol., 416–417, 171181, doi:10.1016/j.jhydrol.2011.11.049.

    • Search Google Scholar
    • Export Citation
  • Campolongo, F., and Saltelli A. , 1997: Sensitivity analysis of an environmental model: An application of different analysis methods. Reliab. Eng. Syst. Saf., 57, 4969, doi:10.1016/S0951-8320(97)00021-5.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjić Z. , and Mitchell K. , 1997: Impact of atmospheric-surface layer parameterizations in the new land surface scheme of the NCEP mesoscale Eta numerical model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Christiaens, K., and Feyen J. , 2002: Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model. Water Resour. Res., 38, 1169, doi:10.1029/2001WR000478.

    • Search Google Scholar
    • Export Citation
  • Confalonieri, R., Bellocchi G. , Bregaglio S. , Donatelli M. , and Acutis M. , 2010: Comparison of sensitivity analysis techniques: A case study with the rice model WARM. Ecol. Modell.,221, 18971906, doi:10.1016/j.ecolmodel.2010.04.021.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149, doi:10.1016/S0309-1708(02)00088-X.

    • Search Google Scholar
    • Export Citation
  • Cukier, R. I., Fortuin C. M. , Shuler K. E. , Petschek A. G. , and Schaibly J. H. , 1973: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J. Chem. Phys., 59, 38733878, doi:10.1063/1.1680571.

    • Search Google Scholar
    • Export Citation
  • Cukier, R. I., Schaibly J. H. , and Shuler K. E. , 1975: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations. J. Chem. Phys., 63, 11401149, doi:10.1063/1.431440.

    • Search Google Scholar
    • Export Citation
  • Cukier, R. I., Levine H. B. , and Shuler K. E. , 1978: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys., 26, 142, doi:10.1016/0021-9991(78)90097-9.

    • Search Google Scholar
    • Export Citation
  • Cullmann, J., Mishra V. , and Peters R. , 2006: Flow analysis with WaSiM-ETH—Model parameter sensitivity at different scales. Adv. Geosci., 9, 7377, doi:10.5194/adgeo-9-73-2006.

    • Search Google Scholar
    • Export Citation
  • Demaria, E. M., Nijssen B. , and Wagener T. , 2007: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res., 112, D11113, doi:10.1029/2006JD007534.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note TN-387STR, National Center for Atmospheric Research, Boulder, CO, 72 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-198.pdf.]

  • Eckhardt, K., and Arnold J. G. , 2001: Automatic calibration of a distributed catchment model. J. Hydrol., 251, 103109, doi:10.1016/S0022-1694(01)00429-2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. , Lin Y. , Rogers E. , Grummann P. , Koren V. , Gayno G. , and Tarpley J. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.,99 (C5), 10 143–10 162, doi:10.1029/94JC00572.

  • Franchini, M., 1996: Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrol. Sci. J., 41, 2139, doi:10.1080/02626669609491476.

    • Search Google Scholar
    • Export Citation
  • Freer, J., Beven K. , and Ambroise B. , 1996: Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resour. Res., 32, 21612173, doi:10.1029/95WR03723.

    • Search Google Scholar
    • Export Citation
  • Frey, H. C., and Patil S. R. , 2002: Identification and review of sensitivity analysis methods. Risk Anal., 22, 553578, doi:10.1111/0272-4332.00039.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Bastidas L. A. , Sorooshian S. , Shuttleworth W. J. , and Yang Z.-L. , 1999: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res., 104 (D16), 19 49119 503, doi:10.1029/1999JD900154.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Sorooshian S. , 1985: The relationship between data and the precision of parameter estimates of hydrologic models. J. Hydrol., 81, 5777, doi:10.1016/0022-1694(85)90167-2.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Snyder C. , 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Search Google Scholar
    • Export Citation
  • Hall, J. W., Boyce S. A. , Wang Y. , Dawson R. J. , Tarantola S. , and Saltelli A. , 2009: Sensitivity analysis for hydraulic models. J. Hydraul. Eng., 135, 959969, doi:10.1061/(ASCE)HY.1943-7900.0000098.

    • Search Google Scholar
    • Export Citation
  • Helton, J. C., Johnson J. D. , Sallaberry C. J. , and Storlie C. B. , 2006: Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf., 91, 11751209, doi:10.1016/j.ress.2005.11.017.

    • Search Google Scholar
    • Export Citation
  • Henriksen, H. J., Troldborg L. , Nyegaard P. , Sonnenborg T. O. , Refsgaard J. C. , and Madsen B. , 2003: Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol., 280, 5271, doi:10.1016/S0022-1694(03)00186-0.

    • Search Google Scholar
    • Export Citation
  • Hornberger, G. M., and Spear R. C. , 1981: Approach to the preliminary analysis of environmental systems. J. Environ. Manage., 12, 718.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., Zhang F. , and Nielsen-Gammon J. W. , 2010: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, doi:10.1029/2010GL043017.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., Xia Y. , Sen M. K. , and Stoffa P. L. , 2003: Optimal parameter and uncertainty estimation of a land surface model: A case study using data from Cabauw, Netherlands. J. Geophys. Res., 108, 4583, doi:10.1029/2002JD002991.

    • Search Google Scholar
    • Export Citation
  • Jacques, J., Lavergne C. , and Devictor N. , 2006: Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Saf., 91, 11261134, doi:10.1016/j.ress.2005.11.047.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, doi:10.1115/1.3662552.

  • Kampf, S. K., 2006: Towards improved representations of hydrologic processes: Linking integrated and distributed hydrologic measurements to a physically-based model for a planar hillslope plot. Water Resources Series Tech. Rep. 183, Department of Civil and Environal Engineering, University of Washington, Seattle, WA, 213 pp. [Available online at http://depts.washington.edu/uwbg/research/Burges/_WRS183-Kampf-2006.pdf.]

  • Kollat, J. B., and Reed P. M. , 2006: Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv. Water Resour., 29, 792807, doi:10.1016/j.advwatres.2005.07.010.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., 2009: Toward a hydrologic modeling system. Ph.D. thesis, The Pennsylvania State University, 251 pp.

  • Lin, H., 2006: Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the Shale Hills catchment. Vadose Zone J., 5, 317340, doi:10.2136/vzj2005.0058.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and Zhou X. , 2008: Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur. J. Soil Sci., 59, 3449, doi:10.1111/j.1365-2389.2007.00988.x.

    • Search Google Scholar
    • Export Citation
  • Lü, H., Hou T. , Horton R. , Zhu Y. , Chen X. , Jia Y. , Wang W. , and Fu X. , 2013: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J. Hydrol., 480, 102114, doi:10.1016/j.jhydrol.2012.12.011.

    • Search Google Scholar
    • Export Citation
  • Massmann, C., and Holzmann H. , 2012: Analysis of the behavior of a rainfall-runoff model using three global sensitivity analysis methods evaluated at different temporal scales. J. Hydrol., 475, 97110, doi:10.1016/j.jhydrol.2012.09.026.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., and Sorooshian S. , 2008: General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis. Hydrological Modelling and the Water Cycle, S. Sorooshian et al., Eds., Springer, Water Science and Technology Library, Vol. 63, 1–24.

  • Moradkhani, H., Sorooshian S. , Gupta H. V. , and Houser P. R. , 2005: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28, 135147, doi:10.1016/j.advwatres.2004.09.002.

    • Search Google Scholar
    • Export Citation
  • Morris, M. D., 1991: Factorial sampling plans for preliminary computational experiments. Technometrics, 33 (2), 161174, doi:10.1080/00401706.1991.10484804.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., Hu X. M. , Zhang F. , and Pleim J. E. , 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417, doi:10.1175/2010MWR3292.1.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Beven K. J. , Ratto M. , and Matgen P. , 2008: Multi-method global sensitivity analysis of flood inundation models. Adv. Water Resour., 31, 114, doi:10.1016/j.advwatres.2007.04.009.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., and Gupta H. V. , 2010: On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resour. Res., 46, W01505, doi:10.1029/2009WR008066.

    • Search Google Scholar
    • Export Citation
  • Prihodko, L., Denning A. S. , Hanan N. P. , Baker I. , and Davis K. J. , 2008: Sensitivity, uncertainty and time dependence of parameters in a complex land surface model. Agric. For. Meteor., 148, 268287, doi:10.1016/j.agrformet.2007.08.006.

    • Search Google Scholar
    • Export Citation
  • Qu, Y., 2004: An integrated hydrologic model for multi-process simulation using semi-discrete finite volume approach. Ph.D. thesis, The Pennsylvania State University, 143 pp. [Available online at http://www.pihm.psu.edu/Downloads/Articles/qu_thesis.pdf.]

  • Qu, Y., and Duffy C. J. , 2007: A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res., 43, W08419, doi:10.1029/2006WR005752.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Kumar S. V. , Mahanama S. P. P. , Koster R. D. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, doi:10.1175/2010JHM1262.1.

    • Search Google Scholar
    • Export Citation
  • Reusser, D. E., Buytaert W. , and Zehe E. , 2011: Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test. Water Resour. Res., 47, W07551, doi:10.1029/2010WR009947.

    • Search Google Scholar
    • Export Citation
  • Salehi, F., Prasher S. O. , Amin S. , Madani A. , Jebelli S. J. , Ramaswamy H. S. , Tan C. , and Drury C. F. , 2000: Prediction of annual nitrate-N losses in drain outflows with artificial neural networks. Trans. ASAE, 43, 11371143, doi:10.13031/2013.3006.

    • Search Google Scholar
    • Export Citation
  • Saltelli, A., Tarantola S. , and Campolongo F. , 2000: Sensitivity analysis as an ingredient of modeling. Stat. Sci., 15, 377395, doi:10.1214/ss/1009213004.

    • Search Google Scholar
    • Export Citation
  • Saltelli, A., Ratto M. , Tarantola S. , and Campolongo F. , 2005: Sensitivity analysis for chemical models. Chem. Rev., 105, 28112828, doi:10.1021/cr040659d.

    • Search Google Scholar
    • Export Citation
  • Saltelli, A., Ratto M. , Tarantola S. , and Campolongo F. , 2006: Sensitivity analysis practices: Strategies for model-based inference. Reliab. Eng. Syst. Saf., 91, 11091125, doi:10.1016/j.ress.2005.11.014.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Shuttleworth W. J. , Dorman J. L. , Dalcher A. , and Roberts J. M. , 1989: Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part I: Average calibration with field data. J. Appl. Meteor., 28, 727759, doi:10.1175/1520-0450(1989)028<0727:CTSBMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., Davis K. J. , Duffy C. J. , and Yu X. , 2013a: Development of a coupled land surface hydrologic model and evaluation at a critical zone observatory. J. Hydrometeor., 14, 14011420, doi:10.1175/JHM-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • Sobol', I. M., 1993: Sensitivity estimates for nonlinear mathematical models. Math. Modell. Comput. Exp.,1, 407414.

  • Sorooshian, S., Duan Q. , and Gupta V. K. , 1993: Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res., 29, 11851194, doi:10.1029/92WR02617.

    • Search Google Scholar
    • Export Citation
  • Sun, X. Y., Newham L. T. H. , Croke B. F. W. , and Norton J. P. , 2012: Three complementary methods for sensitivity analysis of a water quality model. Environ. Modell. Software,37, 1929, doi:10.1016/j.envsoft.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , and Wagener T. , 2006: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci., 10, 289307, doi:10.5194/hess-10-289-2006.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , Wagener T. , and Van Werkhoven K. , 2007: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrol. Earth Syst. Sci., 11, 793817, doi:10.5194/hess-11-793-2007.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898, doi:10.2136/sssaj1980.03615995004400050002x.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Gupta H. V. , Bastidas L. A. , Bouten W. , and Sorooshian S. , 2003: Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res., 39, 1214, doi:10.1029/2002WR001746.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., McIntyre N. , Lees M. J. , Wheater H. S. , and Gupta H. V. , 2003: Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrol. Processes,17, 455476, doi:10.1002/hyp.1135.

    • Search Google Scholar
    • Export Citation
  • Wallner, M., and Coauthors, 2012: Evaluation of different calibration strategies for large scale continuous hydrological modelling. Adv. Geosci., 31, 6774, doi:10.5194/adgeo-31-67-2012.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Pitman A. J. , Gupta H. V. , Leplastrier M. , Henderson-Sellers A. , and Bastidas L. A. , 2002: Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset. J. Hydrometeor., 3, 181194, doi:10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and Zhang D. , 2010: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Adv. Water Resour., 33, 678690, doi:10.1016/j.advwatres.2010.03.012.

    • Search Google Scholar
    • Export Citation
  • Yu, X., Bhatt G. , Duffy C. , and Shi Y. , 2013: Parameterization for distributed watershed modeling using national data and evolutionary algorithm. Comput. Geosci., 58, 8090, doi:10.1016/j.cageo.2013.04.025.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, Vol. 1, Air Pollution III, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Computational Mechanics Publications, 53–60.

  • Zupanski, D., and Zupanski M. , 2006: Model error estimation employing an ensemble data assimilation approach. Mon. Wea. Rev., 134, 13371354, doi:10.1175/MWR3125.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 436 170 1
PDF Downloads 219 75 2