Characterization and Space–Time Downscaling of the Inundation Extent over the Inner Niger Delta Using GIEMS and MODIS Data

Filipe Aires Estellus, France, and Laboratoire d’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France

Search for other papers by Filipe Aires in
Current site
Google Scholar
PubMed
Close
,
Fabrice Papa Laboratoire d’Etude en Géophysique et Océanographie Spatiales, IRD, Toulouse, France, and Indo-French Cell for Water Sciences, IRD-IISc Joint International Laboratory, Indian Institute of Science, Bangalore, India

Search for other papers by Fabrice Papa in
Current site
Google Scholar
PubMed
Close
,
Catherine Prigent Laboratoire d’Étude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France

Search for other papers by Catherine Prigent in
Current site
Google Scholar
PubMed
Close
,
Jean-François Crétaux Laboratoire d’Étude en Géophysique et Océanographie Spatiales, CNES/CNRS/IRD/UPS, Toulouse, France

Search for other papers by Jean-François Crétaux in
Current site
Google Scholar
PubMed
Close
, and
Muriel Berge-Nguyen Laboratoire d’Étude en Géophysique et Océanographie Spatiales, CNES/CNRS/IRD/UPS, Toulouse, France

Search for other papers by Muriel Berge-Nguyen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space–time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space–time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space–time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.

Corresponding author address: F. Aires, Estellus/LERMA Observatoire de Paris, 61, Avenue de l’Observatoire, 74014 Paris, France. E-mail: filipe.aires@estellus.fr

Abstract

The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space–time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space–time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space–time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.

Corresponding author address: F. Aires, Estellus/LERMA Observatoire de Paris, 61, Avenue de l’Observatoire, 74014 Paris, France. E-mail: filipe.aires@estellus.fr
Save
  • Aires, F., Chédin A. , and Nadal J.-P. , 2000: Independent component analysis of multivariate time series: Application to the tropical SST variability. J. Geophys. Res., 105, 17 43717 455, doi:10.1029/2000JD900152.

    • Search Google Scholar
    • Export Citation
  • Aires, F., Rossow W. , Scott N. , and Chédin A. , 2002: Remote sensing from the infrared atmospheric sounding interferometer instrument: 1. Compression, denoising, first-guess retrieval inversion algorithms. J. Geophys. Res., 107, 4619, doi:10.1029/2001JD000955.

    • Search Google Scholar
    • Export Citation
  • Aires, F., Prigent C. , and Rossow W. , 2004: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res., 109, D04313, doi:10.1029/2003JD003527.

    • Search Google Scholar
    • Export Citation
  • Aires, F., Papa F. , and Prigent C. , 2013: A long-term, high-resolution wetland dataset over the Amazon basin, downscaled from a multiwavelength retrieval using SAR data. J. Hydrometeor., 14, 594–607, doi:10.1175/JHM-D-12-093.1.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D., Rodriguez E. , and Lettenmaier D. , 2007: Measuring surface water from space. Rev. Geophys.,45, RG2002, doi:10.1029/2006RG000197.

  • Armstrong, R. L., and Brodzik M. J. , 2005: Northern Hemisphere EASE-grid weekly snow cover and sea ice extent, version 3. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at www.nsidc.org.]

  • Berge-Nguyen, M., Crétaux J. , and Calmant S. , 2008: Combining of radar altimetry and MODIS for the monitoring of flood events: Application to the Inner Niger Delta. Observing and Forecasting the Ocean: OSTST Meeting, Nice, France, CNES/GODAE/IDS/Carte-Blanche, SG.12-132. [Available online at http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/08332/EGU2008-A-08332.pdf.]

  • Brakenridge, G., Syvitski J. , Overeem I. , Stewart-Moore J. , and Kettner A. , 2012: Global mapping of storm surges and the assessment of coastal vulnerability. Nat. Hazards, 66, 12951312, doi:10.1007/s11069-012-0317-z.

    • Search Google Scholar
    • Export Citation
  • Bukata, R. P., 1992: Satellite Monitoring of Inland and Coastal Water Quality: Retrospection, Introspection, Future Directions. Taylor and Francis, 246 pp.

  • Crétaux, J.-F., Letolle R. , and Calmant S. , 2009: Investigation on Aral Sea regressions from mirabilite deposits and remote sensing. Aquat. Geochem., 15, 277–291, doi:10.1007/s10498-008-9051-2.

    • Search Google Scholar
    • Export Citation
  • Crétaux, J.-F., and Coauthors, 2011: Flood mapping inferred from remote sensing data. Int. Water Technol. J.,1, 48–62. [Available online at http://iwtj.info/wp-content/uploads/2011/12/v1-n1-p5.pdf.]

  • del Rio, R. A., Crétaux J.-F. , Berge-Nguyen M. , and Maisongrande P. , 2012: Does Lake Titicaca still control the Lake Poopó system water levels? An investigation using satellite altimetry and MODIS data (2000–2009). Remote Sens. Lett.,3, 707–714, doi:10.1080/01431161.2012.667884.

  • Fluet-Chouinard, E., and Lehner B. , 2011: Towards a high-resolution global inundation delineation dataset. 2011 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H51l-1313.

  • Frappart, F., Papa F. , Famiglietti F. , Prigent C. , Rossow W. , and Seyler F. , 2008: Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin. J. Geophys. Res., 113, D21104, doi:10.1029/2007JD009438.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., and Coauthors, 2011: Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains. Remote Sens. Environ., 115, 15881594, doi:10.1016/j.rse.2011.02.003.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., Papa F. , da Silva J. S. , Ramillien G. , Prigent C. , Seyler F. , and Calmant S. , 2012: Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett., 7, 044010, doi:10.1088/1748-9326/7/4/044010.

    • Search Google Scholar
    • Export Citation
  • Galantowicz, J., 2002: High-resolution flood mapping from low-resolution passive microwave satellite observations. Proc. 2002 IEEE Int. Geoscience and Remote Sensing Symp., Toronto, Ontario, Canada, IEEE, 1499–1502.

  • Jolliffe, I., 2002: Principal Component Analysis.2nd ed. Springer, 502 pp.

  • Legler, D. M., 1984: Comments on “Empirical orthogonal function-analysis of wind vectors over the tropical Pacific region.” Bull. Amer. Meteor. Soc.,65, 162.

  • Li, R.-R., Kaufman Y. J. , Gao B.-C. , and Davis C. O. , 2003: Remote sensing of suspended sediments and shallow coastal waters. IEEE Trans. Geosci. Remote Sens., 41, 559566, doi:10.1109/TGRS.2003.810227.

    • Search Google Scholar
    • Export Citation
  • Li, S., Sun D. , Goldberg M. , and Stefanidis A. , 2013: Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM. Remote Sens. Environ., 134, 417430, doi:10.1016/j.rse.2013.03.015.

    • Search Google Scholar
    • Export Citation
  • Papa, F., Prigent C. , Jimenez C. , Aires F. , and Rossow W. B. , 2010: Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res., 115, D12111, doi:10.1029/2009JD012674.

    • Search Google Scholar
    • Export Citation
  • Pedinotti, V., Boone A. , Decharme B. , Crétaux J. , Mognard N. , Panthou G. , Papa F. , and Tanimoun B. A. , 2012: Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol. Earth Syst. Sci., 16,17451773, doi:10.5194/hess-16-1745-2012.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Matthews E. , Aires F. , and Rossow W. B. , 2001: Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys. Res. Lett., 28, 46314634, doi:10.1029/2001GL013263.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15721584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Papa F. , Aires F. , Rossow W. , and Matthews E. , 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112, D12107, doi:10.1029/2006JD007847.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Papa F. , Aires F. , Jimenez C. , Rossow W. , and Matthews E. , 2012: Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, E., 2012: Surface Water and Ocean Topography Mission (SWOT). Science Requirements Doc., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 22 pp. [Available online at swot.jpl.nasa.gov/files/SWOT_science_reqs_release2_v1.14.pdf.]

  • Sakamoto, T., Nguyen N. , Kotera A. , Ohno H. , Ishitsuka N. , and Yokozawa M. , 2007: Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong delta from MODIS time-series imagery. Remote Sens. Environ., 109, 295313, doi:10.1016/j.rse.2007.01.011.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation.Elsevier, 630 pp.

  • Wang, Y., Colby J. , and Mulcahy K. , 2002: An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int. J. Remote Sens., 23, 36813696, doi:10.1080/01431160110114484.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 504 136 5
PDF Downloads 268 85 4