Hydrologic Implications of Different Large-Scale Meteorological Model Forcing Datasets in Mountainous Regions

Naoki Mizukami National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Naoki Mizukami in
Current site
Google Scholar
PubMed
Close
,
Martyn P. Clark National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
,
Andrew G. Slater Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Andrew G. Slater in
Current site
Google Scholar
PubMed
Close
,
Levi D. Brekke Bureau of Reclamation, Denver, Colorado

Search for other papers by Levi D. Brekke in
Current site
Google Scholar
PubMed
Close
,
Marketa M. Elsner Bureau of Reclamation, Denver, Colorado

Search for other papers by Marketa M. Elsner in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. Arnold U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey R. Arnold in
Current site
Google Scholar
PubMed
Close
, and
Subhrendu Gangopadhyay Bureau of Reclamation, Denver, Colorado

Search for other papers by Subhrendu Gangopadhyay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Process-based hydrologic models require extensive meteorological forcing data, including data on precipitation, temperature, shortwave and longwave radiation, humidity, surface pressure, and wind speed. Observations of precipitation and temperature are more common than other variables; consequently, radiation, humidity, pressure, and wind speed often must be either estimated using empirical relationships with precipitation and temperature or obtained from numerical weather prediction models. This study examines two climate forcing datasets using different methods to estimate radiative energy fluxes and humidity and investigates the effects of the choice of forcing data on hydrologic simulations over the mountainous upper Colorado River basin (293 472 km2). Comparisons of model simulations forced by two climate datasets illustrate that the methods used to estimate shortwave radiation impact hydrologic states and fluxes, particularly at high elevation (e.g., ~20% difference in runoff above 3000-m elevation), substantially altering the timing of snowmelt and runoff (~20 days difference) and the partitioning of precipitation between evapotranspiration and runoff. The different forcing datasets also exhibit differences in hydrologic sensitivity to interannual temperature at high elevation. The results suggest that the choice of forcing dataset is an important consideration when conducting climate impact assessments and the subsequent applications of these assessments for water resources planning and management.

Corresponding author address: Naoki Mizukami, P.O. Box 3000, Boulder, CO 80307. E-mail: mizukami@ucar.edu

Abstract

Process-based hydrologic models require extensive meteorological forcing data, including data on precipitation, temperature, shortwave and longwave radiation, humidity, surface pressure, and wind speed. Observations of precipitation and temperature are more common than other variables; consequently, radiation, humidity, pressure, and wind speed often must be either estimated using empirical relationships with precipitation and temperature or obtained from numerical weather prediction models. This study examines two climate forcing datasets using different methods to estimate radiative energy fluxes and humidity and investigates the effects of the choice of forcing data on hydrologic simulations over the mountainous upper Colorado River basin (293 472 km2). Comparisons of model simulations forced by two climate datasets illustrate that the methods used to estimate shortwave radiation impact hydrologic states and fluxes, particularly at high elevation (e.g., ~20% difference in runoff above 3000-m elevation), substantially altering the timing of snowmelt and runoff (~20 days difference) and the partitioning of precipitation between evapotranspiration and runoff. The different forcing datasets also exhibit differences in hydrologic sensitivity to interannual temperature at high elevation. The results suggest that the choice of forcing dataset is an important consideration when conducting climate impact assessments and the subsequent applications of these assessments for water resources planning and management.

Corresponding author address: Naoki Mizukami, P.O. Box 3000, Boulder, CO 80307. E-mail: mizukami@ucar.edu
Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Hamlet A. F. , and Lettenmaier D. P. , 2009: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Processes, 23, 962972, doi:10.1002/hyp.7201.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., Famiglietti J. S. , Walker J. P. , and Houser P. R. , 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res., 108, 4490, doi:10.1029/2002JD003334.

    • Search Google Scholar
    • Export Citation
  • Blandford, T. R., Humes K. S. , Harshburger B. J. , Moore B. C. , Walden V. P. , and Ye H. , 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261, doi:10.1175/2007JAMC1565.1.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., Maurer E. P. , Anderson J. D. , Dettinger M. D. , Townsley E. S. , Harrison A. , and Pruitt T. , 2009: Assessing reservoir operations risk under climate change. Water Resour. Res., 45, W04411, doi:10.1029/2008WR006941.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Cayan, D. R., Das T. , Pierce D. W. , Barnett T. P. , Tyree M. , and Gershunov A. , 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., and Lettenmaier D. P. , 2007: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434, doi:10.5194/hess-11-1417-2007.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., Wood A. W. , Voisin N. , Lettenmaier D. P. , and Palmer R. N. , 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Das, T., Pierce D. W. , Cayan D. R. , Vano J. A. , and Lettenmaier D. P. , 2011: The importance of warm season warming to western U.S. streamflow changes. Geophys. Res. Lett., 38, L23403, doi:10.1029/2011GL049660.

    • Search Google Scholar
    • Export Citation
  • Elsner, M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225260, doi:10.1007/s10584-010-9855-0.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., Vano J. A. , Zhu C. , and Lettenmaier D. P. , 2011: Evaluating climate change over the Colorado River basin using regional climate models. J. Geophys. Res., 116, D13104, doi:10.1029/2010JD015278.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., Louie P. Y. T. , and Yang D. , 1998: WMO solid precipitation intercomparison. World Meteorological Organization Final Rep., 212 pp.

  • Guo, Z., Dirmeyer P. A. , Hu Z.-Z. , Gao X. , and Zhao M. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Rasmussen R. M. , Liu C. , Ikeda K. , Gochis D. J. , M. P. Clark, Dudhia J. , and Thompson G. , 2011: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Heinke J. , Voß F. , Eisner S. , Chen C. , Hagemann S. , and Ludwig F. , 2012: Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol. Earth Syst. Sci., 16, 305318, doi:10.5194/hess-16-305-2012.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and Coauthors, 2009: Detection and attribution of streamflow timing changes to climate change in the western United States. J. Climate, 22, 38383855, doi:10.1175/2009JCLI2470.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., Lettenmaier D. , Cayan D. , and Udall B. , 2009: Reconciling future Colorado River flows. Southwest Hydrology, Vol. 8, No. 3, University of Arizona SAHRA, Tucson, AZ, 20–21.

  • Hungerford, R. D., Nemani R. , Running S. W. , and Coughlan J. C. , 1989: MT-CLIM: A mountain microclimate simulation model. U.S. Forest Service Research Paper, 56 pp.

  • Idso, S. B., 1981: A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies. Water Resour. Res., 17, 295304, doi:10.1029/WR017i002p00295.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., Running S. W. , and Nemani R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85, 8798, doi:10.1016/S0168-1923(96)02366-0.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Chase T. N. , 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res.,112, G01023, doi:10.1029/2006JG000168.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Materia, S., Dirmeyer P. A. , Guo Z. , Alessandri A. , and Navarra A. , 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334351, doi:10.1175/2009JHM1162.1.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Mote P. W. , and Lundquist J. D. , 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., Chen L.-C. , Shukla S. , Bohn T. J. , and Lettenmaier D. P. , 2012: Uncertainties in North American Land Data Assimilation Systems over the contiguous United States. J. Hydrometeor., 13, 9961009, doi:10.1175/JHM-D-11-0132.1.

    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., Gusev Y. M. , and Kovalev Y. E. , 2011: Impact of uncertainties in meteorological forcing data and land surface parameters on global estimates of terrestrial water balance components. Hydrol. Processes, 25, 10741090, doi:10.1002/hyp.7651.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). National Center for Atmospheric Research Rep., 257 pp.

  • Pepin, N. C., Losleben M. , Hartman M. , and Chowanski K. , 2005: A comparison of SNOTEL and GHCN/CRU surface temperatures with free-air temperatures at high elevations in the western United States: Data compatibility and trends. J. Climate, 18, 19671985, doi:10.1175/JCLI3375.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., Westerling A. L. , and Oyler J. , 2013: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, doi:10.5194/hess-17-1833-2013.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Coauthors, 2003: Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8844, doi:10.1029/2002JD003301.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., Rajagopalan B. , Clark M. , and Pitlick J. , 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384, doi:10.1175/JCLI-3272.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., Hember R. , Coops N. C. , and Liang S. , 2009: Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain. J. Appl. Meteor. Climatol., 48, 24412458, doi:10.1175/2009JAMC2152.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGinnis D. A. , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L Gaile and C. Willmott, Eds., D. Reidel, 133–145.

  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Slater, A. G., 2012: Uncertainty in model forcing: An assessment of solar radiation. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract C33A-0631.

  • Slater, A. G., Barrett A. P. , Clark M. P. , Lundquist J. D. , and Raleigh M. S. , 2013: Uncertainty in seasonal snow reconstruction: Relative impacts of model forcing and image availability. Adv. Water Resour., 55, 165177, doi:10.1016/j.advwatres.2012.07.006.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., Cayan D. R. , and Dettinger M. D. , 2004: Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Climatic Change, 62, 217232, doi:10.1023/B:CLIM.0000013702.22656.e8.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., Cayan D. R. , and Dettinger M. D. , 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Search Google Scholar
    • Export Citation
  • Su, F., and Lettenmaier D. P. , 2009: Estimation of the surface water budget of the La Plata basin. J. Hydrometeor., 10, 981998, doi:10.1175/2009JHM1100.1.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Hasenauer H. , and White M. A. , 2000: Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteor., 104, 255271, doi:10.1016/S0168-1923(00)00170-2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vano, J. A., Das T. , and Lettenmaier D. P. , 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932–949, doi:10.1175/JHM-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Bohn T. J. , Mahanama S. P. , Koster R. D. , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wayand, N. E., Hamlet A. F. , Hughes M. , Feld S. I. , and Lundquist J. D. , 2013: Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the North Fork American River basin in northern Sierra Nevada, California. J. Hydrometeor., 14, 677–699, doi:10.1175/JHM-D-12-0102.1

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2005: Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Processes, 19, 32013219, doi:10.1002/hyp.5819.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenmaier D. P. , 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 547 95 2
PDF Downloads 324 60 0