A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat Cloud Profiling Radar

Mark Smalley University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Mark Smalley in
Current site
Google Scholar
PubMed
Close
,
Tristan L'Ecuyer University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Tristan L'Ecuyer in
Current site
Google Scholar
PubMed
Close
,
Matthew Lebsock Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Matthew Lebsock in
Current site
Google Scholar
PubMed
Close
, and
John Haynes Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by John Haynes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Because of its extensive quality control procedures and uniform space–time grid, the NCEP Stage IV merged Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and surface rain gauge dataset is often considered to be the best long-term gridded dataset of precipitation observations covering the contiguous United States. Stage IV accumulations are employed in a variety of applications, and while the WSR-88D systems are well suited for observing heavy rain events that are likely to affect flooding, limitations in surface radar and gauge measurements can result in missed precipitation, especially near topography and in the western United States. This paper compares hourly Stage IV observations of precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud Profiling Radar, which provides excellent sensitivity to light and frozen precipitation. Statistics from 4 yr of comparisons show that the CloudSat observes precipitation considerably more frequently than the Stage IV dataset, especially in northern states where frozen precipitation is prevalent in the cold season. The skill of Stage IV for precipitation detection is found to decline rapidly when the near-surface air temperature falls below 0°C. As a result, agreement between Stage IV and CloudSat tends to be best in the southeast, where radar coverage is good and moderate-to-heavy liquid precipitation dominates. Stage IV and CloudSat precipitation detection characteristics are documented for each of the individual river forecast centers that contribute to the Stage IV dataset to provide guidance regarding potential sampling biases that may impact hydrologic applications.

Corresponding author address: Mark Smalley, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: smalley2@wisc.edu

Abstract

Because of its extensive quality control procedures and uniform space–time grid, the NCEP Stage IV merged Weather Surveillance Radar-1988 Doppler (WSR-88D) radar and surface rain gauge dataset is often considered to be the best long-term gridded dataset of precipitation observations covering the contiguous United States. Stage IV accumulations are employed in a variety of applications, and while the WSR-88D systems are well suited for observing heavy rain events that are likely to affect flooding, limitations in surface radar and gauge measurements can result in missed precipitation, especially near topography and in the western United States. This paper compares hourly Stage IV observations of precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud Profiling Radar, which provides excellent sensitivity to light and frozen precipitation. Statistics from 4 yr of comparisons show that the CloudSat observes precipitation considerably more frequently than the Stage IV dataset, especially in northern states where frozen precipitation is prevalent in the cold season. The skill of Stage IV for precipitation detection is found to decline rapidly when the near-surface air temperature falls below 0°C. As a result, agreement between Stage IV and CloudSat tends to be best in the southeast, where radar coverage is good and moderate-to-heavy liquid precipitation dominates. Stage IV and CloudSat precipitation detection characteristics are documented for each of the individual river forecast centers that contribute to the Stage IV dataset to provide guidance regarding potential sampling biases that may impact hydrologic applications.

Corresponding author address: Mark Smalley, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: smalley2@wisc.edu
Save
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Behrangi, A., Lebsock M. , Wong S. , and Lambrigtsen B. , 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L'Ecuyer T. , and Haynes J. M. , 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, Y. M., Fienberg S. E. , and Holland P. W. , 1975: Discrete Multivariate Analysis: Theory and Practice. MIT Press, 557 pp.

  • Cao, Q., Hong Y. , Gourley J. J. , Qi Y. , Zhang J. , Wen Y. , and Kirstetter P.-E. , 2013: Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM precipitation radar. J. Appl. Meteor. Climatol., 52, 408424, doi:10.1175/JAMC-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., L'Ecuyer T. , Haynes J. M. , and Stephens G. L. , 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, doi:10.1029/2008GL036728.

    • Search Google Scholar
    • Export Citation
  • Fulton, R., cited2005: Multisensor Precipitation Estimator (MPE) Workshop. [Available online at http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/MPE_workshop_NWSTC_lecture2_121305.pdf.]

  • Fulton, R., Breidenbach J. P. , Seo D.-J. , and Miller D. A. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Hong Y. , Flamig Z. L. , Li L. , and Wang J. , 2010: Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteor. Climatol., 49, 437452, doi:10.1175/2009JAMC2302.1.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Larson B. F. , and Graschel J. , 2009: Validation of NEXRAD multisensor precipitation estimates using an experimental dense rain gauge network in south Louisiana. J. Hydrol., 373, 463478, doi:10.1016/j.jhydrol.2009.05.010.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Qin L. , Seo D. , Ciach G. J. , and Nelson B. R. , 2013: Independent assessment of incremental complexity in NWS multisensor precipitation estimator algorithms. J. Hydrol. Eng., 18, 143155, doi:10.1061/(ASCE)HE.1943-5584.0000638.

    • Search Google Scholar
    • Export Citation
  • Hartzell, C. L., Hunster S. M. , and Holroyd E. W. I. , 2001: Development of a WSR-88D based precipitation accumulation algorithm for quantitative precipitation estimates over northwest Oregon. Preprints, 17th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Albuquerque, NM, Amer. Meteor. Soc., 146150.

  • Haynes, J. M., L'Ecuyer T. S. , Stephens G. L. , Miller S. D. , Mitrescu C. , Wood N. B. , and Tanelli S. , 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., Chang S. , and Locatelli J. D. , 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., Rodriguez P. , and Donaldson N. , 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Kursinski, A. L., and Mullen S. L. , 2008: Spatiotemporal variability of hourly precipitation over the eastern contiguous United States from stage IV multisensor analyses. J. Hydrometeor., 9, 321, doi:10.1175/2007JHM856.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and L'Ecuyer T. S. , 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • L'Ecuyer, T., and Stephens G. , 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L'Ecuyer, T. S., Berg W. , Haynes J. , Lebsock M. , and Takemura T. , 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Hou A. Y. , 2012: Estimation of rain intensity spectra over the continental United States using ground radar–gauge measurements. J. Climate, 25, 19011915, doi:10.1175/JCLI-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Maddox, R., Zhang J. , Gourley J. , and Howard K. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., Mace G. G. , Ackerman T. , and Stephens G. , 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and Battaglia A. , 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. Geophys. Res. Lett., 36, L12806, doi:10.1029/2009GL038704.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., Levizzani V. , Anagnostou E. , Bauer P. , Kasparis T. , and Lane J. E. , 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512533, doi:10.1016/j.atmosres.2009.08.017.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and Coauthors, 1999: A flash flood from a lake-enhanced rainband. Wea. Forecasting, 14, 271288, doi:10.1175/1520-0434(1999)014<0271:AFFFAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Partain, P., 2007: CloudSat ECMWF-AUX auxiliary data process description and interface control document (algorithm version 5.2). CloudSat Project Doc., 11 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/ECMWF-AUX/ECMWF-AUX_PDICD_5.2.doc.]

  • Peirce, C., 1884: The numerical measure of the success of predictions. Science, ns-4, 453454, doi:10.1126/science.ns-4.93.453-a.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Wea. Forecasting, 15, 221232, doi:10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat's cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Tao, K., and Barros A. P. , 2010: Using fractal downscaling of satellite precipitation products for hydrometeorological applications. J. Atmos. Oceanic Technol., 27, 409427, doi:10.1175/2009JTECHA1219.1.

    • Search Google Scholar
    • Export Citation
  • Tesfagiorgis, K., Mahani S. E. , Krakauer N. Y. , and Khanbilvardi R. , 2011: Bias correction of satellite rainfall estimates using a radar-gauge product—A case study in Oklahoma (USA). Hydrol. Earth Syst. Sci., 15, 26312647, doi:10.5194/hess-15-2631-2011.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., Knapp H. V. , and Hilberg S. D. , 2008: Comparison of gage and multi-sensor precipitation estimates over a range of spatial and temporal scales in the Midwestern United States. J. Hydrol., 351, 112, doi:10.1016/j.jhydrol.2007.10.057.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Mass C. F. , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc.,80, 2289–2298, doi:10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 704 pp.

  • Wu, W., Kitzmiller D. , and Wu S. , 2012: Evaluation of radar precipitation estimates from the National Mosaic and Multisensor Quantitative Precipitation Estimation System and the WSR-88D Precipitation Processing System over the conterminous United States. J. Hydrometeor., 13, 10801093, doi:10.1175/JHM-D-11-064.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Mullen S. L. , Gao X. , Sorooshian S. , Du J. , and Juang H.-M. H. , 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM ensemble system. Mon. Wea. Rev., 133, 279294, doi:10.1175/MWR-2858.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Gao X. , Mullen S. L. , Sorooshian S. , Du J. , and Juang H.-M. H. , 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 12871303, doi:10.1175/2007WAF2006114.1.

    • Search Google Scholar
    • Export Citation
  • Yule, G. U., 1900: On the association of attributes in statistics. Philos. Trans. Roy. Soc. London,A194, 257–319, doi:10.1098/rsta.1900.0019.

  • Zhang, J., and Qi Y. , 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Langston C. , and Howard K. , 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 18591872, doi:10.1175/2008JTECHA1039.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 638 188 16
PDF Downloads 406 128 12