Principal Components of Multifrequency Microwave Land Surface Emissivities. Part I: Estimation under Clear and Precipitating Conditions

F. Joseph Turk Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. Joseph Turk in
Current site
Google Scholar
PubMed
Close
,
Ziad S. Haddad Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ziad S. Haddad in
Current site
Google Scholar
PubMed
Close
, and
Yalei You Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Yalei You in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The upcoming Global Precipitation Measurement mission will provide considerably more overland observations over complex terrain, high-elevation river basins, and cold surfaces, necessitating an improved assessment of the microwave land surface emissivity. Current passive microwave overland rainfall algorithms developed for the Tropical Rainfall Measuring Mission (TRMM) rely upon hydrometeor scattering-induced signatures at high-frequency (85 GHz) brightness temperatures (TBs) and are empirical in nature. A multiyear global database of microwave surface emissivities encompassing a wide range of surface conditions was retrieved from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) radiometric clear scenes using companion A-Train [CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Atmospheric Infrared Sounder (AIRS)] data. To account for the correlated emissivity structure, the procedure first derives the TRMM Microwave Imager–like nine-channel emissivity principal component (PC) structure. Relations are derived to estimate the emissivity PCs directly from the instantaneous TBs, which allows subsequent TB observations to estimate the PC structure and reconstruct the emissivity vector without need for ancillary data regarding the surface or atmospheric conditions. Radiative transfer simulations matched the AMSR-E TBs within 5–7-K RMS difference in the absence of precipitation. Since the relations are derived specifically for clear-scene conditions, discriminant analysis was performed to find the PC discriminant that best separates clear and precipitation scenes. When this technique is applied independently to two years of TRMM data, the PC-based discriminant demonstrated superior relative operating characteristics relative to the established 85-GHz scattering index, most notably during cold seasons.

Corresponding author address: F. Joseph Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov

Abstract

The upcoming Global Precipitation Measurement mission will provide considerably more overland observations over complex terrain, high-elevation river basins, and cold surfaces, necessitating an improved assessment of the microwave land surface emissivity. Current passive microwave overland rainfall algorithms developed for the Tropical Rainfall Measuring Mission (TRMM) rely upon hydrometeor scattering-induced signatures at high-frequency (85 GHz) brightness temperatures (TBs) and are empirical in nature. A multiyear global database of microwave surface emissivities encompassing a wide range of surface conditions was retrieved from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) radiometric clear scenes using companion A-Train [CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Atmospheric Infrared Sounder (AIRS)] data. To account for the correlated emissivity structure, the procedure first derives the TRMM Microwave Imager–like nine-channel emissivity principal component (PC) structure. Relations are derived to estimate the emissivity PCs directly from the instantaneous TBs, which allows subsequent TB observations to estimate the PC structure and reconstruct the emissivity vector without need for ancillary data regarding the surface or atmospheric conditions. Radiative transfer simulations matched the AMSR-E TBs within 5–7-K RMS difference in the absence of precipitation. Since the relations are derived specifically for clear-scene conditions, discriminant analysis was performed to find the PC discriminant that best separates clear and precipitation scenes. When this technique is applied independently to two years of TRMM data, the PC-based discriminant demonstrated superior relative operating characteristics relative to the established 85-GHz scattering index, most notably during cold seasons.

Corresponding author address: F. Joseph Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov
Save
  • Aires, F., Prigent C. , Bernardo F. , Jimenez C. , Saunders R. , and Brunel P. , 2011: A tool to estimate land surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction schemes. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., Ohring G. , Kummerow C. , and Auligne T. , 2011: Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Amer. Meteor. Soc., 92, ES25ES28, doi:10.1175/2011BAMS3182.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L'Ecuyer T. , and Haynes J. M. , 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., and Coauthors, 2011: MIRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 3249–3272, doi:10.1109/TGRS.2011.2158438.

    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L., and Kummerow C. D. , 2010: A physically based screen for precipitation over complex surfaces using passive microwave observations. IEEE Trans. Geosci. Remote Sens., 48, 299–313, doi:10.1109/TGRS.2009.2027434.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Weng F. , Han Y. , and Liu Q. , 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, doi:10.1029/2007JD009561.

    • Search Google Scholar
    • Export Citation
  • Cordisco, E., Prigent C. , and Aires F. , 2006: Snow characterization at a global scale with passive microwave satellite observations. J. Geophys. Res., 111, D19102, doi:10.1029/2005JD006773.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, doi:10.1109/TGRS.2012.2199121.

    • Search Google Scholar
    • Export Citation
  • Ferrazzoli, P., and Coauthors, 2010: The effect of rain and flooding events on AMSR-E signatures of La Plata Basin, Argentina. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 81–90, doi:10.1109/JSTARS.2010.2040584.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., and Liu G. , 2007: Possible misidentification of rain type by TRMM PR over the Tibetan Plateau. J. Appl. Meteor. Climatol., 46, 667–672, doi:10.1175/JAM2484.1.

    • Search Google Scholar
    • Export Citation
  • Galantowicz, J. F., Moncet J.-L. , Liang P. , Lipton A. E. , Uymin G. , Prigent C. , and Grassotti C. , 2011: Subsurface emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval. J. Geophys. Res., 116, D17105, doi:10.1029/2010JD015431.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., Wang N. Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 2008: Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res., 113, D22108, doi:10.1029/2007JD009685.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., and Weng F. , 2008: Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens., 46, 361375, doi:10.1109/TGRS.2007.909920.

    • Search Google Scholar
    • Export Citation
  • Han Y., van Delst P. , Liu Q. , Weng F. , Yan B. , Treadon R. , and Derber J. , 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. NESDIS 122, 33 pp. [Available online at ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/CRTM_v1-NOAA_Tech_Report_NESDIS122.pdf.]

  • Heidinger, A. K., O'Dell C. , Bennartz R. , and Greenwald T. , 2006: The Successive-Order-of-Interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402, doi:10.1175/JAM2387.1.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., and Coauthors, 2012: GPM Cold Season Precipitation Experiment (GCPEx). Proc. 2012 EUMETSAT Meteorological Satellite Conf., Sopot, Poland, EUMETSAT, 8 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S4_08_HUDAK_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Hulley, G. C., Hook S. J. , Manning E. , Lee S.-Y. , and Fetzer E. , 2009: Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. J. Geophys. Res., 114, D19104, doi:10.1029/2009JD012351.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., Catherinot J. , Prigent C. , and Roger J. , 2010: Relations between geological characteristics and satellite-derived infrared and microwave emissivities over deserts in northern Africa and the Arabian Peninsula. J. Geophys. Res., 115, D20311, doi:10.1029/2010JD013959.

    • Search Google Scholar
    • Export Citation
  • Kacimi, S., Viltard N. , Kirstetter P. , 2013: A new methodology for rain identification from passive microwave data in the tropics using neural networks. Quart. J. Roy. Meteor. Soc.,139, 912–922, doi:10.1002/qj.2114.

  • Kumar, S. V., and Coauthors, 2006: Land Information System ‐ An Interoperable Framework for High Resolution Land Surface Modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a-priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2010: WindSat global soil moisture retrieval and validation. IEEE Trans. Geosci. Remote Sens., 48, 22242241, doi:10.1109/TGRS.2009.2037749.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Zhang Q. , Vaughan M. , Marchand R. , Stephens G. , Trepte C. , and Winker D. , 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Mathew, N., Heygster G. , Melsheimer C. , and Kaleschke L. , 2008: Surface emissivity of Arctic sea ice at AMSU window frequencies. IEEE Trans. Geosci. Remote Sens., 46, 22982306, doi:10.1109/TGRS.2008.916630.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Skofronick-Jackson G. , 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • National Operational Hydrologic Remote Sensing Center, 2004: Snow depth. Snow Data Assimilation System (SNODAS) Data Products at NSIDC. National Snow and Ice Data Center, Boulder, CO, digital media, doi:10.7265/N5TB14TC.

  • Norouzi, H., Rossow W. , Temini M. , Prigent C. , and Azarderakhsh M. , 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ., 123, 470482, doi:10.1016/j.rse.2012.04.015.

    • Search Google Scholar
    • Export Citation
  • Olsen, E. T., Fishbein E. , Granger S. , Lee S. Y. , Manning E. , Weiler M. , Blaisdell J. , and Susskind J. , 2007: AIRS/AMSU/HSB Version 5 Data Release Users Guide. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 68 pp. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_Data_Release_UG.pdf.]

  • Petersen, W., and Jensen M. P. , 2012: Physical validation of GPM retrieval algorithms over land: An overview of the NASA–DOE Mid-Latitude Continental Convective Clouds Experiment (MC3E). Preprints, 18th Conf. on Satellite Meteorology, Oceanography and Climatology, New Orleans, LA, Amer. Meteor. Soc., 172. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper196151.html.]

  • Petty, G., and Li K. , 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Rossow W. , Matthews E. , and Marticorena B. , 1999: Microwave radiometric signatures of different surface types in deserts. J. Geophys. Res., 104, 12 147–12 158, doi:10.1029/1999JD900153.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ringerud, S., Kummerow C. D. , Peters-Lidard C. , Tian Y. , and Harrison K. , 2013: A comparison of microwave window channel retrieved and forward-modeled emissivities over the U.S. Southern Great Plains. IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2013.2260759, in press.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruston, B. C., and Vonder Haar T. H. , 2004: Characterization of summertime microwave emissivities from the Special Sensor Microwave Imager over the conterminous United States. J. Geophys. Res., 109, D19103, doi:10.1029/2004JD004890.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Johnson B. T. , 2011: Surface and atmospheric contributions to passive microwave brightness temperatures. J. Geophys. Res., 116, D02213, doi:10.1029/2010JD014438.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: CloudSat's Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, doi:10.1109/TGRS.2008.2002030.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Li L. , and Haddad Z. S. , 2012: Physical modeling of microwave surface emissivity from passive microwave satellite observations. Preprints, 18th Conf. on Satellite Meteorology, Oceanography and Climatology, New Orleans, LA, Amer. Meteor. Soc., J5.2. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper201740.html.]

  • Weng, F., Yan B. , and Grody N. , 2001: A microwave land emissivity model. J. Geophys. Res., 106, 20 11520 123, doi:10.1029/2001JD900019.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • You, Y., Turk F. J. , Haddad Z. S. , Li L. , and Liu G. , 2013: Principal components of multifrequency microwave land surface emissivities. Part II: Effects of previous-time precipitation. J. Hydrometeor., 15, 2037, doi:10.1175/JHM-D-13-07.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 115 12
PDF Downloads 149 73 3