Investigation of Discrepancies in Satellite Rainfall Estimates over Ethiopia

Matthew P. Young Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Matthew P. Young in
Current site
Google Scholar
PubMed
Close
,
Charles J. R. Williams Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Charles J. R. Williams in
Current site
Google Scholar
PubMed
Close
,
J. Christine Chiu Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by J. Christine Chiu in
Current site
Google Scholar
PubMed
Close
,
Ross I. Maidment Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Ross I. Maidment in
Current site
Google Scholar
PubMed
Close
, and
Shu-Hua Chen Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Search for other papers by Shu-Hua Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demonstrates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all elevations. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave-based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding regional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.

Corresponding author address: Matthew Young, Department of Meteorology, University of Reading, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: m.young@pgr.reading.ac.uk

Abstract

Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demonstrates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all elevations. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave-based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding regional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.

Corresponding author address: Matthew Young, Department of Meteorology, University of Reading, P.O. Box 243, Reading, RG6 6BB, United Kingdom. E-mail: m.young@pgr.reading.ac.uk
Save
  • Adler, R. F., and Negri J. A. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, doi:10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barancourt, C., Creutin J. D. , and Rivoirard J. , 1992: A method for delineating and estimating rainfall fields. Water Resour. Res., 28, 11331144, doi:10.1029/91WR02896.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Petty G. W. , 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, E., Cornforth R. J. , Lamb P. J. , Tarhule A. , Lélé M. I. , and Brouder A. , 2013: Building resilience to face recurring environmental crisis in African Sahel. Nat. Climate Change, 3, 631637, doi:10.1038/nclimate1856.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., and Grimes D. , 2012: An artificial neural network approach to multispectral rainfall estimation over Africa. J. Hydrometeor., 13, 913931, doi:10.1175/JHM-D-11-081.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Li Z. , Kuligowski R. J. , Ferraro R. , and Weng F. , 2011: A study of warm rain detection using A-Train satellite data. Geophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and Suarez M. J. , 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 38 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Chou136.pdf.]

  • Chou, M.-D., Suarez M. J. , Liang X.-Z. , and Yan M. M.-H. , 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104609, 56 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/tm/docs/Chou137.pdf.]

  • Devereux, S., 2007: The impact of droughts and floods on food security and policy options to alleviate negative effects. Agric. Econ., 37, 4758, doi:10.1111/j.1574-0862.2007.00234.x.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ceccato P. , Grover-Kopec E. , Lemma M. , Connor S. J. , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 15031526, doi:10.1080/01431160600954688.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ceccato P. , and Connor S. J. , 2011: Challenges of satellite rainfall estimation over mountainous and arid parts of East Africa. Int. J. Remote Sens., 32, 59655979, doi:10.1080/01431161.2010.499381.

    • Search Google Scholar
    • Export Citation
  • Diro, G. T., Black E. , and Grimes D. , 2008: Seasonal forecasting of Ethiopian spring rains. Meteor. Appl., 15, 7383, doi:10.1002/met.63.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735, doi:10.1029/97JD01210.

    • Search Google Scholar
    • Export Citation
  • Gissila, T., Black E. , Grimes D. , and Slingo J. , 2004: Seasonal forecasting of the Ethiopian summer rains. Int. J. Climatol., 24, 13451358, doi:10.1002/joc.1078.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Dévényi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett.,29, 1693, doi:10.1029/2002GL015311.

  • Grimes, D., Pardo-Igzquiza E. , and Bonifacio R. , 1999: Optimal areal rainfall estimation using rain gauges and satellite data. J. Hydrol., 222, 93108, doi:10.1016/S0022-1694(99)00092-X.

    • Search Google Scholar
    • Export Citation
  • Habib, E., ElSaadani M. , and Haile A. , 2012: Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin. J. Appl. Meteor. Climatol., 51, 21052121, doi:10.1175/JAMC-D-11-0252.1.

    • Search Google Scholar
    • Export Citation
  • Han, M., Braun S. A. , Olson W. S. , Persson P. O. G. , and Bao J. W. , 2010: Application of TRMM PR and TMI measurements to assess cloud microphysical schemes in the MM5 for a winter storm. J. Appl. Meteor. Climatol., 49, 11291148, doi:10.1175/2010JAMC2327.1.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F., Gebremichael M. , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, doi:10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. J., Petty G. W. , and Skofronick-Jackson G. , 2012: Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. J. Appl. Meteor. Climatol., 51, 21522171, doi:10.1175/JAMC-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., Grimes D. I. F. , and Tarnavsky E. , 2012: Rainfall data generation and analysis for African meteorology. Climate Change, Agriculture and Food Security Tech. Rep., 26 pp.

  • Maidment, R. I., Grimes D. I. F. , Allan R. P. , Greatrex H. , Rojas O. , and Leo O. , 2013: Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteor. Appl., 20, 308317, doi:10.1002/met.1283.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., Grimes D. I. F. , Allan R. P. , Tarnavsky E. , Stringer M. , Hewison T. , Roebeling R. , and Black E. , 2014: The 30 year TAMSAT African Rainfall Climatology and Time Series (TARCAT) data set. J. Geophys. Res. Atmos., 20, doi:10.1002/2014JD021927, in press.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Gruber A. , and Ba M. B. , 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679, doi:10.1175/1520-0450-39.5.666.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Curry J. A. , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Novella, N. S., and Thiaw W. M. , 2013: African Rainfall Climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588606, doi:10.1175/JAMC-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45, 702720, doi:10.1175/JAM2369.1.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1999: Prevalence of precipitation from warm-topped clouds over eastern Asia and the western Pacific. J. Climate, 12, 220229, doi:10.1175/1520-0442-12.1.220.

    • Search Google Scholar
    • Export Citation
  • Romilly, T., and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Tarnavsky, E., Grimes D. I. F. , Maidment R. I. , Stringer M. , Chadwick R. , Allan R. P. , Black E. , and Kayitakire F. , 2014: Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-14-0016.1, in press.

    • Search Google Scholar
    • Export Citation
  • Thorne, V., Coakeley P. , Grimes D. , and Dugdale G. , 2001: Comparison of TAMSAT and CPC rainfall estimates with rain gauges, for southern Africa. Int. J. Remote Sens., 22, 19511974, doi:10.1080/01431160118816.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., Barrett E. C. , Beaumont M. J. , and Green J. L. , 1995: Satellite identification of rain days over the upper Nile River basin using an optimum infrared rain no-rain threshold temperature model. J. Appl. Meteor., 34, 26002611, doi:10.1175/1520-0450(1995)034<2600:SIORDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., Barrett E. C. , Beaumont M. J. , and Bellerby T. J. , 1999: Estimation of daily rainfall over the upper Nile River basin using a continuously calibrated satellite infrared technique. Meteor. Appl., 6, 201210, doi:10.1017/S1350482799001206.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and Adebiyi A. A. , 2012: Using CloudSat cloud retrievals to differentiate satellite-derived rainfall products over West Africa. J. Hydrometeor., 13, 18101816, doi:10.1175/JHM-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Verdin, J., Funk C. , Senay G. , and Choularton R. , 2005: Climate science and famine early warning. Philos. Trans. Roy. Soc. London, B360, 21552168, doi:10.1098/rstb.2005.1754.

    • Search Google Scholar
    • Export Citation
  • Washington, R., and Coauthors, 2006: African climate change: Taking the shorter route. Bull. Amer. Meteor. Soc., 87, 13551366, doi:10.1175/BAMS-87-10-1355.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Zhao L. , Ferraro R. , Poe G. , Li X. , and Grody N. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068–8079, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and Skamarock W. C. , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., and Weng F. , 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41, 384395, doi:10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1592 895 33
PDF Downloads 488 83 2