Assimilation of Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought Estimation

Sujay V. Kumar * Science Applications International Corporation, McLean, Virginia, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
David Mocko Science Applications International Corporation, McLean, Virginia, and Global Modeling and Assimilation Office, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by David Mocko in
Current site
Google Scholar
PubMed
Close
,
Rolf Reichle Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf Reichle in
Current site
Google Scholar
PubMed
Close
,
Yuqiong Liu Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yuqiong Liu in
Current site
Google Scholar
PubMed
Close
,
Kristi R. Arsenault * Science Applications International Corporation, McLean, Virginia, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kristi R. Arsenault in
Current site
Google Scholar
PubMed
Close
,
Youlong Xia ** I. M. Systems Group, Inc., and NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Youlong Xia in
Current site
Google Scholar
PubMed
Close
,
Michael Ek NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Michael Ek in
Current site
Google Scholar
PubMed
Close
,
George Riggs Science Systems and Applications, Inc., Lanham, and Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George Riggs in
Current site
Google Scholar
PubMed
Close
,
Ben Livneh Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
, and
Michael Cosh Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, McLean, Virginia

Search for other papers by Michael Cosh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979–2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translate into subsequent small improvements in simulated streamflow. The assimilation of snow depth datasets were found to generally improve the snow fields, but these improvements did not always translate to corresponding improvements in streamflow, including some notable degradations observed in the western United States. A quantitative examination of the percentage drought area from root-zone soil moisture and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil moisture assimilation provides improvements at short time scales, both in the magnitude and representation of the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often disadvantageous.

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Corresponding author address: Sujay Kumar, Hydrological Sciences Laboratory, NASA GSFC, Code 617, Greenbelt, MD 20771. E-mail: sujay.v.kumar@nasa.gov

Abstract

The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979–2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translate into subsequent small improvements in simulated streamflow. The assimilation of snow depth datasets were found to generally improve the snow fields, but these improvements did not always translate to corresponding improvements in streamflow, including some notable degradations observed in the western United States. A quantitative examination of the percentage drought area from root-zone soil moisture and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil moisture assimilation provides improvements at short time scales, both in the magnitude and representation of the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often disadvantageous.

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Corresponding author address: Sujay Kumar, Hydrological Sciences Laboratory, NASA GSFC, Code 617, Greenbelt, MD 20771. E-mail: sujay.v.kumar@nasa.gov
Save
  • Andreadis, K., and Lettenmaier D. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872886, doi:10.1016/j.advwatres.2005.08.004.

    • Search Google Scholar
    • Export Citation
  • Arsenault, K., Houser P. , De Lannoy G. , and Dirmeyer P. , 2013: Impacts of snow cover fraction data assimilation on modeled energy and moisture budgets. J. Geophys. Res. Atmos., 118, 7489–7504, doi:10.1002/jgrd.50542.

    • Search Google Scholar
    • Export Citation
  • Bales, R., Molotch N. , Painter T. , Dettinger M. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., Adam J. , and Lettenmaier D. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 428, 303–309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Snow Data Assimilation System (SNODAS) products at NSIDC. Special Rep. 11, NSIDC, Boulder, CO, 19 pp. [Available online at https://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf.]

  • Berg, A., and Mulroy K. , 2006: Streamflow predictability in the Saskatchewan/Nelson River basin given macroscale estimates of initial soil moisture. Hydrol. Sci., 51, 642654, doi:10.1623/hysj.51.4.642.

    • Search Google Scholar
    • Export Citation
  • Bissolli, P., and Maier U. , 2009: SnowClim: Snow climate monitoring for Europe. Abstracts, Ninth EMS Annual Meeting/Ninth European Conf. on Applications of Meteorology, Toulouse, France, EMS, EMS2009-530. [Available online at http://meetingorganizer.copernicus.org/EMS2009/EMS2009-530.pdf.]

  • Bolten, J., and Crow W. , 2012: Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture. Geophys. Res. Lett., 39, L19406, doi:10.1029/2012GL053470.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation land surface scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R., and Braaten R. , 1998: Spatial and temporal variability of Canadian monthly snow depths. Atmos.–Ocean, 36, 3745, doi:10.1080/07055900.1998.9649605.

    • Search Google Scholar
    • Export Citation
  • Brown, R., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0447.]

  • Carroll, T., Cline D. , Fall G. , Nilsson A. , Li L. , and Rost A. , 2001: NOHRSC operations and the simulation of snow cover properties for the conterminous U.S. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 14 pp.

  • Chang, A., Foster J. , and Hall D. , 1987: Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol., 9, 3944.

  • Cordisco, A., Prigent C. , and Aires F. , 2006: Snow characterization at a global scale with passive microwave satellite observations. J. Geophys. Res., 111, D19102, doi:10.1029/2005JD006773.

    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crow, W., and Wood E. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137–149, doi:10.1016/S0309-1708(02)00088-X.

    • Search Google Scholar
    • Export Citation
  • Crow, W., Bindlish R. , and Jackson T. , 2005: The added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall–runoff ratio partitioning. Geophys. Res. Lett., 32, L18401, doi:10.1029/2005GL023543.

    • Search Google Scholar
    • Export Citation
  • Dechant, C., and Moradkhani H. , 2011: Radiance data assimilation for operational snow and streamflow forecasting. Adv. Water Resour., 34, 351364, doi:10.1016/j.advwatres.2010.12.009.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., Reichle R. , Arsenault K. , Houser P. , Kumar S. , Verhoest N. , and Pauwels V. , 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:10.1029/2011WR010588.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., Balsamo G. , Albergel A. , Munoz-Sabater J. , and Isaksen L. , 2013: Initialisation of land surface variables for Numerical Weather Prediction. Surv. Geophys., 35, 607–621, doi:10.1007/s10712-012-9207-x.

    • Search Google Scholar
    • Export Citation
  • Dong, J., Walker J. , and Houser P. , 2005: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97, 6882, doi:10.1016/j.rse.2005.04.010.

    • Search Google Scholar
    • Export Citation
  • Dong, J., Walker J. , Houser P. , and Sun C. , 2007: Scanning multichannel microwave radiometer snow water equivalent assimilation. J. Geophys. Res.,112, D07108, doi:10.1029/2006JD007209.

  • Draper, C., Mahfouf J. , and Walker J. , 2011: Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, doi:10.1029/2010JD013829.

    • Search Google Scholar
    • Export Citation
  • Draper, C., Reichle R. , De Lannoy G. , and Liu Q. , 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, doi:10.1029/2011GL050655.

    • Search Google Scholar
    • Export Citation
  • Dressier, K., Leavesley G. , Bales R. , and Fassnacht S. , 2004: Streamflow estimation from hydrologic model assimilation of remotely sensed snow information in snowmelt dominated basins. Eos, Trans. Amer. Geophys. Union, 85 (Fall Meeting Suppl.), Abstract C31A-0288.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Vasiljevic D. , and Viterbo P. , 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 12821294, doi:10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. , and Gao H. , 2005: Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett., 32, L15403, doi:10.1029/2005GL023623.

    • Search Google Scholar
    • Export Citation
  • Ek, M., Mitchell K. , Yin L. , Rogers P. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. , 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and Coauthors, 2011: North American Land Data Assimilation System Phase 2 (NLDAS-2): Development and applications. GEWEX News, Vol. 21, No. 2, International GEWEX Project Office, Silver Spring, MD, 67. [Available online at www.gewex.org/gewexnews/May2011.pdf.]

  • Entekhabi, D., Reichle R. , Koster R. , and Crow W. , 2010a: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, doi:10.1175/2010JHM1223.1.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010b: The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Ferguson, R., 1985: Runoff from glacierized mountains: A model for annual variation and its forecasting. Water Resour. Res., 21, 702708, doi:10.1029/WR021i005p00702.

    • Search Google Scholar
    • Export Citation
  • Ffolliott, P., Gottfried G. , and Baker M. , 1989: Water yield from forest snowpack management: Research findings in Arizona and New Mexico. Water Resour. Res., 25, 19992007, doi:10.1029/WR025i009p01999.

    • Search Google Scholar
    • Export Citation
  • Foster, J., Chang A. , and Hall D. , 1997: Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sens. Environ., 62, 132142, doi:10.1016/S0034-4257(97)00085-0.

    • Search Google Scholar
    • Export Citation
  • Foster, J., Sun C. , Walker J. , Kelly R. , Chang A. , Dong J. , and Powell H. , 2005: Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ., 94, 187203, doi:10.1016/j.rse.2004.09.012.

    • Search Google Scholar
    • Export Citation
  • Franz, K., and Sorooshian S. , 2008: Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol., 360, 4866, doi:10.1016/j.jhydrol.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Hain, C., Crow W. , Anderson M. , and Mecikalski J. , 2012: An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model. Water Resour. Res., 48, W11517, doi:10.1029/2011WR011268.

    • Search Google Scholar
    • Export Citation
  • He, M., Hogue T. , Margulis S. , and Franz K. , 2011: An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions. Hydrol. Earth Syst. Sci. Discuss., 8, 77097755, doi:10.5194/hessd-8-7709-2011.

    • Search Google Scholar
    • Export Citation
  • Heim, R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165.

  • Jackson, T. J., 1993: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7, 139152, doi:10.1002/hyp.3360070205.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Coauthors, 2010: Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 42564272, doi:10.1109/TGRS.2010.2051035.

    • Search Google Scholar
    • Export Citation
  • Kelly, R., 2009: The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Japan,29, 307–317, doi:10.11440/rssj.29.307.

  • Kelly, R., Chang A. , Tsang L. , and Foster J. , 2003: A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41, 230242, doi:10.1109/TGRS.2003.809118.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and Dracup J. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180.

    • Search Google Scholar
    • Export Citation
  • Koster, R., Mahanama S. , Livneh B. , Lettenmaier D. , and Reichle R. , 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, doi:10.1038/ngeo944.

    • Search Google Scholar
    • Export Citation
  • Koster, R., Walker G. , Mahanama S. , and Reichle R. , 2014: Soil moisture initialization error and subgrid variability of precipitation in seasonal streamflow forecasting. J. Hydrometeor., 15, 69–88, doi:10.1175/JHM-D-13-050.1.

    • Search Google Scholar
    • Export Citation
  • Krenke, A., 2004: Former Soviet Union hydrological snow surveys, 1966–1996. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g01170.]

  • Kumar, S., and Coauthors, 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Reichle R. , Peters-Lidard C. , Koster R. , Zhan X. , Crow W. , Eylander J. , and Houser P. , 2008: A land surface data assimilation framework using the Land Information System: Description and applications. Adv. Water Resour., 31, 14191432, doi:10.1016/j.advwatres.2008.01.013.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Reichle R. , Koster R. , Crow W. , and Peters-Lidard C. , 2009: Role of subsurface physics in the assimilation of surface soil moisture observations. J. Hydrometeor., 10, 15341547, doi:10.1175/2009JHM1134.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Peters-Lidard C. , Santanello J. , Harrison K. , Liu Y. , and Shaw M. , 2012a: Land surface Verification Toolkit (LVT)—A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869886, doi:10.5194/gmd-5-869-2012.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Reichle R. , Harrison K. , Peters-Lidard C. , Yatheendradas S. , and Santanello J. , 2012b: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, doi:10.1175/JHM-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Parinussa R. , Dorigo W. , De Jeu R. , Wagner W. , Van Dijk A. , McCabe M. , and Evans J. , 2011: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci., 15, 425436, doi:10.5194/hess-15-425-2011.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Peters-Lidard C. , Kumar S. , Foster J. , Shaw M. , Tian Y. , and Fall G. , 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227, doi:10.1016/j.advwatres.2013.02.005.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Xia Y. , Mitchell K. , Ek M. , and Lettenmaier D. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721–738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Nolte-Holube R. , and Raschke E. , 1996: A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus, 48A, 708721, doi:10.1034/j.1600-0870.1996.t01-3-00009.x.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 1998: The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes. Global Planet. Change, 19, 161179, doi:10.1016/S0921-8181(98)00046-0.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res.,109, D07S91, doi:10.1029/2003JD003517.

  • Mahanama, S., Koster R. , Reichle R. , and Zubair L. , 2008: The role of soil moisture initialization in subseasonal and seasonal streamflow prediction—A case study in Sri Lanka. Adv. Water Resour., 31, 13331343, doi:10.1016/j.advwatres.2008.06.004.

    • Search Google Scholar
    • Export Citation
  • Mahanama, S., Livneh B. , Koster R. , Lettenmaier D. , and Reichle R. , 2012: Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189203, doi:10.1175/JHM-D-11-046.1.

    • Search Google Scholar
    • Export Citation
  • Margulis, S., McLaughlin D. , Entekhabi D. , and Dunne S. , 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res.,38, 1299, doi:10.1029/2001WR001114.

  • Markus, T., Powell D. , and Wang J. , 2006: Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution. IEEE Trans. Geosci. Remote Sens., 44, 68–77, doi:10.1109/TGRS.2005.860208.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., Mocko D. , Lee M.-I. , Suarez M. , and Pielke R. Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, doi:10.1029/2010GL044139.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Lettenmaier D. P. , 2003: Predictability of seasonal runoff in the Mississippi River basin. J. Geophys. Res.,108, 8607, doi:10.1029/2002JD002555.

  • Menne, M. J., Durre I. , Vose R. S. , Gleason B. E. , and Houston T. G. , 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilization of multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mo, K., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, doi:10.1175/2008JHM1002.1.

  • Mote, P., Hamlet A. , Clark M. , and Lettenmaier D. , 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Search Google Scholar
    • Export Citation
  • Nagarajan, K., Judge J. , Monsivais-Huertero A. , and Graham W. , 2012: Impact of assimilating passive microwave observations on root-zone soil moisture under dynamic vegetation conditions. IEEE Trans. Geosci. Remote Sens., 50, 42794291, doi:10.1109/TGRS.2012.2191154.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Lettenmaier D. , Liang X. , Wetzel S. , and Wood E. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and Entekhabi D. , 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184, 101130, doi:10.1016/0022-1694(95)02970-2.

    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., Naemi V. , Bloschl G. , Wagner W. , Merz R. , and Scipal L. , 2006: Assimilating scatterometer soil moisture data into conceptual hydrologic models at coarse scales. Hydrol. Earth Syst. Sci., 10, 353368, doi:10.5194/hess-10-353-2006.

    • Search Google Scholar
    • Export Citation
  • Pauwels, R., Hoeben R. , Verhoest N. , De Troch F. , and Troch P. , 2002: Improvements of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrol. Processes, 16, 9951013, doi:10.1002/hyp.315.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth System modeling with NASA/GSFC’s Land Information System. Innovations Syst. Software Eng., 3 (3), 157165, doi:10.1007/s11334-007-0028-x.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., Kumar S. , Mocko D. , and Tian Y. , 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 39793992, doi:10.1002/hyp.8387.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J., and Gray D. , 1995: Snowcover Accumulation, Relocation and Management.National Hydrology Research Institute, 350 pp.

  • Pulliainen, J., 2006: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ., 101, 257269, doi:10.1016/j.rse.2006.01.002.

    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., and Hallikainen M. , 2001: Retrieval of regional snow water equivalent from spaceborne passive microwave observations. Remote Sens. Environ., 75, 7685, doi:10.1016/S0034-4257(00)00157-7.

    • Search Google Scholar
    • Export Citation
  • Rango, A., Salomonson V. , and Foster J. , 1977: Seasonal streamflow estimation in the Himalayan region employing meteorological satellite snow cover observations. Water Resour. Res., 13, 109112, doi:10.1029/WR013i001p00109.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., 2008: Data assimilation methods in the Earth sciences. Adv. Water Resour., 31, 14111418, doi:10.1016/j.advwatres.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett.,31, L19501, doi:10.1029/2004GL020938.

  • Reichle, R., and Koster R. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32, L02404, doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., McLaughlin D. , and Entekhabi D. , 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114, doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Walker J. , Koster R. , and Houser P. , 2002b: Extended vs. ensemble Kalman filtering. J. Hydrometeor., 3, 728740, doi:10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. , Liu P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Kumar S. , Mahanama S. , Koster R. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, doi:10.1175/2010JHM1262.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Houser P. , 2004: Updating a land surface model with MODIS-derived snow cover. J. Hydrometeor., 5, 10641075, doi:10.1175/JHM-395.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Ross, B., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0447.]

  • Roy, A., Royer A. , and Turcotte R. , 2010: Improvement of springtime streamflow simulations in a boreal environment by incorporating snow covered area derived from remote sensing data. J. Hydrol., 390, 3544, doi:10.1016/j.jhydrol.2010.06.027.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G., Cosh M. , and Jackson T. , 2007: The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C., Robock A. , Vinnikov K. , Speranskaya N. , and Xue Y. , 1997: 18-year land surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev., 125, 32793296, doi:10.1175/1520-0493(1997)125<3279:YLSHMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Xia Y. , Luo L. , Wood E. , Ek M. , and Mitchell K. , 2012: North American Land Data Assimilation System (NLDAS): A framework for merging model and satellite data for improved drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches, B. Wardlow, M. Anderson, and J. Verdin, Eds., Taylor and Francis, 227–260.

  • Shukla, S., and Wood A. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Slater, A., and Clark M. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, doi:10.1175/JHM505.1.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Tedesco, M., and Narvekar P. , 2010: Assessment of the NASA AMSRE-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 141159, doi:10.1109/JSTARS.2010.2040462.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., Reichle R. , Low A. , Markus T. , and Foster J. , 2010: Dynamic approaches for snow depth retrieval from spaceborne microwave brightness temperature. IEEE Trans. Geosci. Remote Sens., 48, 19551967, doi:10.1109/TGRS.2009.2036910.

    • Search Google Scholar
    • Export Citation
  • Thirel, G., Salamon P. , Burek P. , and Kalas M. , 2011: Assimilation of MODIS snow cover area data in a distributed hydrological model. Hydrol. Earth Syst. Sci. Discuss., 8, 13291364, doi:10.5194/hessd-8-1329-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Zeng X. , and Decker M. , 2010: Improving snow processes in the Noah land surface model. J. Geophys. Res., 115, D20108, doi:10.1029/2009JD013761.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Kumar A. , and Lettenmaier D. P. , 2005: A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. J. Geophys. Res., 110, D04105, doi:10.1029/2004JD004508.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. , Wei H. , and Meng J. , 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, doi:10.1002/hyp.8240.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012c: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. , Peters-Lidard C. , Mocko D. , Svoboda M. , Sheffield J. , and Wood E. , 2014: Application of USDM statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States. J. Geophys. Res. Atmos., 119, 2947–2965, doi:10.1002/2013JD020994.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Zhao Y. , Armstrong R. , Robinson D. , and Brodzik M.-J. , 2007: Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J. Geophys. Res.,112, F02S22, doi:10.1029/2006JF000518.

  • Yatheendradas, Y., and Coauthors, 2012: Distributed assimilation of satellite-based snow extent for improving simulated streamflow in mountainous, dense forests: An example over the DMIP2 western basins. Water Resour. Res., 48, W09557, doi:10.1029/2011WR011347.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B., and Rodell M. , 2009: Forward-looking assimilation of MODIS-derived snow covered area into a land surface model. J. Hydrometeor., 10, 130148, doi:10.1175/2008JHM1042.1.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B., Rodell M. , and Olivera F. , 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, W06507, doi:10.1029/2009WR007811.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9387 6320 135
PDF Downloads 1639 284 10