Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar

Anita D. Rapp Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Anita D. Rapp in
Current site
Google Scholar
PubMed
Close
,
Alexander G. Peterson University of Idaho, Moscow, Idaho

Search for other papers by Alexander G. Peterson in
Current site
Google Scholar
PubMed
Close
,
Oliver W. Frauenfeld Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Oliver W. Frauenfeld in
Current site
Google Scholar
PubMed
Close
,
Steven M. Quiring Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
, and
E. Brendan Roark Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by E. Brendan Roark in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical Rainfall Measuring Mission Precipitation Radar precipitation features are analyzed to understand the role of storm characteristics on the seasonal and diurnal cycles of precipitation in four distinct regions in Costa Rica. The distribution of annual rainfall is highly dependent on the stratiform precipitation, driven largely by seasonal increases in stratiform area. The monthly distribution of stratiform rain is bimodal in most regions, but the timing varies regionally and is related to several important large-scale features: the Caribbean low-level jet, the ITCZ, and the Chorro del Occidente Colombiano (CHOCO) jet. The relative importance of convective precipitation increases on the Caribbean side during wintertime cold air surges. Except for the coastal Caribbean domain, most regions show a strong diurnal cycle with an afternoon peak in convection followed by an evening increase in stratiform rain. Along the Caribbean coast, the diurnal cycle is weaker, with evidence of convection associated with the sea breeze, as well as a nocturnal increase in storms. The behavior of extreme precipitation features with rain volume in the 99th percentile is also analyzed. They are most frequent from May to November, with notable differences between features at the beginning/end of the rainy season versus those in the middle, as well as between wet and dry seasons. Convective rain exceeds stratiform in winter and midsummer extreme features, while stratiform rain is larger at the beginning and end of the wet season. Given projected changes in precipitation and extreme events in Costa Rica for future climate change scenarios, the results indicate the importance of understanding both changes in total precipitation and in the storm characteristics.

Corresponding author address: Anita Rapp, Department of Atmospheric Sciences, 3150 TAMU, College Station, TX 77843-3150. E-mail: arapp@tamu.edu

Abstract

Tropical Rainfall Measuring Mission Precipitation Radar precipitation features are analyzed to understand the role of storm characteristics on the seasonal and diurnal cycles of precipitation in four distinct regions in Costa Rica. The distribution of annual rainfall is highly dependent on the stratiform precipitation, driven largely by seasonal increases in stratiform area. The monthly distribution of stratiform rain is bimodal in most regions, but the timing varies regionally and is related to several important large-scale features: the Caribbean low-level jet, the ITCZ, and the Chorro del Occidente Colombiano (CHOCO) jet. The relative importance of convective precipitation increases on the Caribbean side during wintertime cold air surges. Except for the coastal Caribbean domain, most regions show a strong diurnal cycle with an afternoon peak in convection followed by an evening increase in stratiform rain. Along the Caribbean coast, the diurnal cycle is weaker, with evidence of convection associated with the sea breeze, as well as a nocturnal increase in storms. The behavior of extreme precipitation features with rain volume in the 99th percentile is also analyzed. They are most frequent from May to November, with notable differences between features at the beginning/end of the rainy season versus those in the middle, as well as between wet and dry seasons. Convective rain exceeds stratiform in winter and midsummer extreme features, while stratiform rain is larger at the beginning and end of the wet season. Given projected changes in precipitation and extreme events in Costa Rica for future climate change scenarios, the results indicate the importance of understanding both changes in total precipitation and in the storm characteristics.

Corresponding author address: Anita Rapp, Department of Atmospheric Sciences, 3150 TAMU, College Station, TX 77843-3150. E-mail: arapp@tamu.edu
Save
  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, doi:10.1029/2005JD006119.

    • Search Google Scholar
    • Export Citation
  • Alfaro, E., 2002: Characteristics of the annual precipitation cycle in Central America and their relationship with its surrounding tropical oceans. Top. Meteor. Oceanogr., 9, 88103.

    • Search Google Scholar
    • Export Citation
  • Alvarado, L. F., Campos M. , Zárate E. , Ramírez P. , and Bonilla A. , 2005: Escenarios de cambio climático para Centroamérica. Documento Técnico CRRH-UCR-CIGEFI-AIACC-LA06, 57 pp.

  • Amador, J. A., 1998: A climatic feature of the tropical Americas: The trade wind easterly jet. Top. Meteor. Oceanogr., 5, 91102.

  • Amador, J. A., 2008: The intra-Americas sea low-level jet. Ann. N. Y. Acad. Sci., 1146, 153188, doi:10.1196/annals.1446.012.

  • Amador, J. A., Magaña V. , and Pérez J. , 2000: The low level jet and convective activity in the Caribbean. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 114–115.

  • Awaka, J., Iguchi T. , Kumagai H. , and Okamoto K. , 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. 1997 Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 16331635.

  • Biasutti, M., and Yuter S. E. , 2013: Observed frequency and intensity of tropical precipitation from instantaneous estimates. J. Geophys. Res., 118, 95349551, doi:10.1002/jgrd.50694.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., Yuter S. E. , Burleyson C. D. , and Sobel A. H. , 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Freilich M. H. , and Esbensen S. K. , 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018, doi:10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1988: Inertial wind path and sea surface temperature patterns near the Gulf of Tehuantepec and Gulf of Papagayo. J. Geophys. Res., 93, 15 49115 501, doi:10.1029/JC093iC12p15491.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and Vizy E. K. , 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23, 14771494, doi:10.1175/2009JCLI3210.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Durán-Quesada, A. M., Gimeno L. , Amador J. A. , and Nieto R. , 2010: Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res., 115, D05103, doi:10.1029/2009JD012455.

    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., Reboita M. , and Gimeno L. , 2012: Precipitation in tropical America and the associated sources of moisture: A short review. Hydrol. Sci. J., 57, 612624, doi:10.1080/02626667.2012.673723.

    • Search Google Scholar
    • Export Citation
  • Fernandez, W., and Barrantes J. A. , 1996: The Central American temporal: A long-lived tropical rain-producing system. Top. Meteor. Oceanogr., 3, 7388.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.

  • Grandoso, H., de Montero V. , and Castro V. , 1982: Caracteristicas de la atmósfera libre sobre Costa Rica y sus relaciones con la precipitación. Instituto Geográfico Nacional, Ministerio de Obras Públicas y Transportes Tech. Rep., 46 pp.

  • Gray, W. M., and Jacobsen R. W. , 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guy, N., and Rutledge S. A. , 2012: Regional comparison of West African convective characteristics: A TRMM-based climatology. Quart. J. Roy. Meteor. Soc., 138, 11791195, doi:10.1002/qj.1865.

    • Search Google Scholar
    • Export Citation
  • Hager, A., and Dohrenbusch A. , 2011: Hydrometeorology and structure of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica. Hydrol. Processes, 25, 392401, doi:10.1002/hyp.7726.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1967: Rainfall distribution and regime in Central America. Arch. Meteor. Geophys. Bioklimatol., 15B, 201241, doi:10.1007/BF02243853.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: The intertropical convergence zone of the eastern Pacific revisited. Int. J. Climatol., 22, 347356, doi:10.1002/joc.739.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Houze, R. A., Jr., Rasmussen K. L. , Medina S. , Brodzik S. R. , and Romatschke U. , 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, doi:10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghine R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., and Mulligan M. , 2011: The climate of cloud forests. Hydrol. Processes, 25, 327343, doi:10.1002/hyp.7847.

  • Kessler, W. S., 2002: Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr., 32, 24572471, doi:10.1175/1520-0485-32.9.2457.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Wang B. , 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., Ohta A. , Katsumata M. , Mori S. , Satoh S. , and Uyeda H. , 2005: Seasonal transition of predominant precipitation type and lightning activity over tropical monsoon areas derived from TRMM observations. Geophys. Res. Lett., 32, L14710, doi:10.1029/2005GL022986.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, doi:10.1175/2010JHM1320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , Cecil D. J. , Nesbitt S. W. , and Sherwood S. , 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climate, 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., Amador J. A. , and Medina S. , 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, doi:10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McAdie, C. J., Landsea C. W. , Neumann C. J. , David J. E. , Blake E. S. , and Hammer G. R. , 2009: Tropical cyclones of the North Atlantic Ocean, 1851–2006. NOAA Historical Climatology Series 6-2, 238 pp.

  • Méndez, M., and Magaña V. , 2010: Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Climate, 23, 11751188, doi:10.1175/2009JCLI3080.1.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., Busalacchi A. J. , Nigam S. , and Ruiz-Barradas A. , 2008: Winter and summer structure of the Caribbean low-level jet. J. Climate, 21, 12601276, doi:10.1175/2007JCLI1855.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Zipser E. J. , and Cecil D. , 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Cifelli R. , and Rutledge S. A. , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Peña, M., and Douglas M. W. , 2002: Characteristics of wet and dry spells over the Pacific side of Central America during the rainy season. Mon. Wea. Rev., 130, 30543073, doi:10.1175/1520-0493(2002)130<3054:COWADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Portig, W. H., 1965: Central American rainfall. Geogr. Rev., 55, 6890, doi:10.2307/212856.

  • Poveda, G., and Mesa O. J. , 2000: On the existence of Lloro (the rainiest locality on Earth): Enhanced ocean–land–atmosphere interaction by a low-level jet. Geophys. Res. Lett., 27, 16751678, doi:10.1029/1999GL006091.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., Waylen P. R. , and Pulwarty R. S. , 2006: Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 234, 327, doi:10.1016/j.palaeo.2005.10.031.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., Jaramillo L. , and Vallejo L. F. , 2014: Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res., 50, 98118, doi:10.1002/2013WR014087.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., Medina S. , and Houze R. A. Jr., 2010: Regional, seasonal, and diurnal variations of convection in the South Asian monsoon region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., and Frank W. , 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D., Bracken W. E. , and Bosart L. F. , 1998: Planetary and synoptic scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, doi:10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., Kiladis G. N. , and Hodges K. I. , 2010: Tracking and mean structure of easterly waves over the intra-Americas Sea. J. Climate, 23, 48234840, doi:10.1175/2010JCLI3223.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J. O., de Szoeke S. P. , and Xie S.-P. , 2007: The Central American midsummer drought: Regional aspects and large-scale forcing. J. Climate, 20, 48534873, doi:10.1175/JCLI4261.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Houze R. A. Jr., and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vargas, A. B., and Trejos V. F. S. , 1994: Changes in the general circulation and its influences on precipitation trends in Central America: Costa Rica. Ambio, 23, 8790. [Available online at http://www.jstor.org/stable/4314167.]

    • Search Google Scholar
    • Export Citation
  • Wang, C., and Enfield D. B. , 2001: The tropical Western Hemisphere warm pool. Geophys. Res. Lett., 28, 16351638, doi:10.1029/2000GL011763.

    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., and Laporte S. , 1999: Flooding and the El Niño–Southern Oscillation phenomenon along the Pacific coast of Costa Rica. Hydrol. Processes, 13, 26232638, doi:10.1002/(SICI)1099-1085(199911)13:16<2623::AID-HYP941>3.0.CO;2-H.

    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., and Quesada M. E. , 2002: The effect of Atlantic and Pacific sea surface temperatures on the mid-summer drought of Costa Rica. Environmental Change and Water Sustainability, J. M. García-Ruíz, J. A. A. Jones, and J. Arnaez, Eds., Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas, 197–209.

  • Waylen, P. R., and Harrison M. , 2005: The coincidence of daily rainfall events in Liberia, Costa Rica and tropical cyclones in the Caribbean basin. Int. J. Climatol., 25, 16651674, doi:10.1002/joc.1241.

    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., Caviedes C. N. , and Quesada M. E. , 1996a: Interannual variability of monthly precipitation in Costa Rica. J. Climate, 9, 26062613, doi:10.1175/1520-0442(1996)009<2606:IVOMPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waylen, P. R., Quesada M. E. , and Caviedes C. N. , 1996b: Temporal and spatial variability of annual precipitation in Costa Rica and the Southern Oscillation. Int. J. Climatol., 16, 173193, doi:10.1002/(SICI)1097-0088(199602)16:2<173::AID-JOC12>3.0.CO;2-R.

    • Search Google Scholar
    • Export Citation
  • Webster, P., 1994: The role of hydrological processes in ocean–atmosphere interaction. Rev. Geophys., 32, 427476, doi:10.1029/94RG01873.

    • Search Google Scholar
    • Export Citation
  • Whyte, F. S., Taylor M. A. , Stephenson T. S. , and Campbell J. D. , 2008: Features of the Caribbean low level jet. Int. J. Climatol., 28, 119128, doi:10.1002/joc.1510.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Xu H. , Kessler W. S. , and Nonaka M. , 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, doi:10.1175/JCLI-3249.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., Zipser E. J. , and Liu C. , 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over south China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 42614275, doi:10.1175/2009MWR2982.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and Smith E. A. , 2008: Convective–stratiform precipitation variability at seasonal scale from 8 years of TRMM observations: Implications for multiple modes of diurnal variability. J. Climate, 21, 40874114, doi:10.1175/2008JCLI2096.1.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and Poveda G. , 2004: Diagnóstico de sistemas convectivos de mesoescala sobre Colombia y el océano Pacifico oriental durante 1998–2002. Av. Recur. Hidraul., 11, 145160.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 891 202 11
PDF Downloads 368 124 9