Impact of Climate Change on Reservoir Flood Control in the Upstream Area of the Beijiang River Basin, South China

Chuanhao Wu School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China

Search for other papers by Chuanhao Wu in
Current site
Google Scholar
PubMed
Close
,
Guoru Huang School of Civil Engineering and Transportation, and State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China

Search for other papers by Guoru Huang in
Current site
Google Scholar
PubMed
Close
,
Haijun Yu School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China

Search for other papers by Haijun Yu in
Current site
Google Scholar
PubMed
Close
,
Zhijing Chen Hydrology Bureau of Guangdong Province, Guangzhou, China

Search for other papers by Zhijing Chen in
Current site
Google Scholar
PubMed
Close
, and
Jingguang Ma Hydrology Bureau of Guangdong Province, Guangzhou, China

Search for other papers by Jingguang Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the potential impacts of global warming is likely to be experienced through changes in flood frequency and magnitude, which poses a potential threat to the downstream reservoir flood control system. In this paper, the downscaling results of the multimodel dataset from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively) were coupled with the Variable Infiltration Capacity (VIC) model to evaluate the impact of climate change on the Feilaixia reservoir flood control in the Beijiang River basin for the first time. Four emissions scenarios [A1B and representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5] were chosen. Results indicate that annual distribution and interannual variability of temperature and precipitation are well simulated by the downscaling results of the CMIP3 and CMIP5 multimodel dataset. The VIC model, which performs reasonably well in simulating runoff processes with high model efficiency and low relative error, is suitable for the study area. Overall, annual maximum 1-day precipitation in 2020–50 would increase under all the scenarios (relative to the baseline period 1970–2000). However, the spatial distribution patterns of changes in projected extreme precipitation are uneven under different scenarios. Extreme precipitation is most closely associated with extreme floods in the study area. There is a gradual increase in extreme floods in 2020–50 under any of the different emission scenarios. The increases in 500-yr return period daily discharge of the Feilaixia reservoir have been found to be from 4.35% to 9.18% in 2020–50. The reservoir would be likely to undergo more flooding in 2020–50.

Corresponding author address: Guoru Huang, School of Civil Engineering and Transportation, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China. E-mail: huanggr@scut.edu.cn

Abstract

One of the potential impacts of global warming is likely to be experienced through changes in flood frequency and magnitude, which poses a potential threat to the downstream reservoir flood control system. In this paper, the downscaling results of the multimodel dataset from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively) were coupled with the Variable Infiltration Capacity (VIC) model to evaluate the impact of climate change on the Feilaixia reservoir flood control in the Beijiang River basin for the first time. Four emissions scenarios [A1B and representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5] were chosen. Results indicate that annual distribution and interannual variability of temperature and precipitation are well simulated by the downscaling results of the CMIP3 and CMIP5 multimodel dataset. The VIC model, which performs reasonably well in simulating runoff processes with high model efficiency and low relative error, is suitable for the study area. Overall, annual maximum 1-day precipitation in 2020–50 would increase under all the scenarios (relative to the baseline period 1970–2000). However, the spatial distribution patterns of changes in projected extreme precipitation are uneven under different scenarios. Extreme precipitation is most closely associated with extreme floods in the study area. There is a gradual increase in extreme floods in 2020–50 under any of the different emission scenarios. The increases in 500-yr return period daily discharge of the Feilaixia reservoir have been found to be from 4.35% to 9.18% in 2020–50. The reservoir would be likely to undergo more flooding in 2020–50.

Corresponding author address: Guoru Huang, School of Civil Engineering and Transportation, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China. E-mail: huanggr@scut.edu.cn
Save
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Burn, D. H., and Simonovic S. P. , 1996: Sensitivity of reservoir operation performance to climatic change. Water Resour. Manage., 10, 463478, doi:10.1007/BF00422550.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Guo S. L. , Xu C. Y. , and Singh V. P. , 2007: Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J. Hydrol., 344, 171184, doi:10.1016/j.jhydrol.2007.06.034.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Xiang T. T. , Zhou X. , and Xu C. Y. , 2012: Impacts of climate change on the Qingjiang watershed’s runoff change trend in China. Stochastic Environ. Res. Risk Assess., 26, 847858, doi:10.1007/s00477-011-0524-2.

    • Search Google Scholar
    • Export Citation
  • Chen, H. P., Sun J. Q. , and Chen X. L. , 2013: Future changes of drought and flood events in China under a global warming scenario. Atmos. Oceanic Sci. Lett., 6, 813.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104, 19 59919 610, doi:10.1029/1999JD900337.

    • Search Google Scholar
    • Export Citation
  • Dankers, R., and Feyen L. , 2008: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res., 113, D19105, doi:10.1029/2007JD009719.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., and Coulibaly P. , 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, doi:10.1016/j.jhydrol.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Jin Y. , Singh B. , and Yan X. , 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, doi:10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Foley, A. M., 2010: Uncertainty in regional climate modeling: A review. Prog. Phys. Geogr., 34, 647670, doi:10.1177/0309133310375654.

    • Search Google Scholar
    • Export Citation
  • Gulizia, C., and Camilloni I. , 2014: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol., doi:10.1002/joc.4005, in press.

    • Search Google Scholar
    • Export Citation
  • Guo, S. L., 1995: Impacts of climate change on flood frequencies and peak discharges (in Chinese with English abstract). Adv. Water Sci., 6, 224230.

    • Search Google Scholar
    • Export Citation
  • Guo, S. L., Guo J. , Zhang J. , and Chen H. , 2009: VIC distributed hydrological model to predict climate change impact in the Hanjiang basin. Sci. China Ser. E.,52, 32343239, doi:10.1007/s11431-009-0355-2.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., Defries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hao, Z. C., Ju Q. , Wang L. , Wang H. , and Jiang W. , 2011: Prediction of extreme floods in Huaihe River basin under climate change (in Chinese with English abstract). Adv. Water Sci., 22, 605614.

    • Search Google Scholar
    • Export Citation
  • Harding, B. L., Wood A. W. , and Prairie J. R. , 2012: The implications of climate change scenario selection for future streamflow projection in the upper Colorado River basin. Hydrol. Earth Syst. Sci., 16, 39894007, doi:10.5194/hess-16-3989-2012.

    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and Tibshirani R. J. , 1990: Generalized Additive Models. Chapman and Hall, 335 pp.

  • Hosking, J. R. M., and Wallis J. R. , 1997: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 280 pp.

  • Huang, S. H., Yao H. Q. , and Duan Y. H. , 2007: Determination of horizontal deformation supervision index for Shegang embankment of the Feilaixia Project (in Chinese with English abstract). Chin. Rural Water Hydropower,6, 89–91.

  • Jiang, D. B., and Tian Z. P. , 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, doi:10.1007/s11434-012-5533-0.

    • Search Google Scholar
    • Export Citation
  • Kay, A. L., Jones R. G. , and Reynard N. S. , 2006: RCM rainfall for UK flood frequency estimation. II. Climate change results. J. Hydrol., 318, 163172, doi:10.1016/j.jhydrol.2005.06.013.

    • Search Google Scholar
    • Export Citation
  • Khazaei, M. R., Zahabiyoun B. , and Saghafian B. , 2012: Assessment of climate change impact on floods using weather generator and continuous rainfall–runoff model. Int. J. Climatol., 32, 19972006, doi:10.1002/joc.2416.

    • Search Google Scholar
    • Export Citation
  • Kim, H. J., Wang B. , and Ding Q. , 2008: The global monsoon variability simulated by CMIP3 coupled climate models. J. Climate, 21, 52715294, doi:10.1175/2008JCLI2041.1.

    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and Coauthors, 2010: Assessing river flood risk and adaptation in Europe—Review of projections for the future. Mitigation Adapt. Strategies Global Change, 15, 641656, doi:10.1007/s11027-010-9213-6.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., Döll P. , Alcamo J. , Henrichs T. , and Kaspar F. , 2006: Estimating the impact of global change on flood and drought risks in Europe: A continental integrated analysis. Climatic Change, 75, 273299, doi:10.1007/s10584-006-6338-4.

    • Search Google Scholar
    • Export Citation
  • Li, L., Xu H. , Chen X. , and Simonovic S. P. , 2010: Streamflow forecast and reservoir operation performance assessment under climate change. Water Resour. Manage., 24, 83104, doi:10.1007/s11269-009-9438-x.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and Xie Z. , 2001: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface model. Adv. Water Resour., 24, 11731193, doi:10.1016/S0309-1708(01)00032-X.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996a: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996b: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1999: Modeling ground heat flux in land surface parameterization schemes. J. Geophys. Res., 104, 95819600, doi:10.1029/98JD02307.

    • Search Google Scholar
    • Export Citation
  • Liu, L. L., Jiang T. , Xu J. G. , Zhai J. Q. , and Luo Y. , 2012: Responses of hydrological processes to climate change in the Zhujiang River basin in the 21st century. Adv. Climate Change Res., 3, 8491, doi:10.3724/SP.J.1248.2012.00084.

    • Search Google Scholar
    • Export Citation
  • Liu, L. L., Fischer T. , Jiang T. , and Luo Y. , 2013: Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quat. Int., 304, 5161, doi:10.1016/j.quaint.2013.02.039.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., Guilyardi E. , Weller H. , and Slingo J. , 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170176, doi:10.1002/asl.227.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • Loukas, A., Vasiliades L. , and Dalezios N. , 2004: Climate change implications on flood response of a mountainous watershed. Water Air Soil Pollut.: Focus, 4, 331347, doi:10.1023/B:WAFO.0000044809.79328.9d.

    • Search Google Scholar
    • Export Citation
  • Lutz, A. F., Immerzeel W. W. , Gobiet A. , Pellicciotti F. , and Bierkens M. F. P. , 2013: Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for central Asian glaciers. Hydrol. Earth Syst. Sci., 17, 36613677, doi:10.5194/hess-17-3661-2013.

    • Search Google Scholar
    • Export Citation
  • McAvaney, B. J., and Coauthors, 2001: Model evaluation. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 471–524.

  • McLachlan, G. J., and Krishnan T. , 2008: The EM Algorithm and Extensions. 2nd ed. Wiley, 359 pp.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747845.

    • Search Google Scholar
    • Export Citation
  • Mirza, M. M. Q., Warrick R. A. , and Ericksen N. J. , 2003: The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Climatic Change, 57, 287318, doi:10.1023/A:1022825915791.

    • Search Google Scholar
    • Export Citation
  • Muller-Wohlfeil, D. I., Burger G. , and Lahmer W. , 2000: Response of a river catchment to climatic change: Application of expanded downscaling to northern Germany. Climatic Change, 47, 6189, doi:10.1023/A:1005613306339.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Special Report on Emission Scenarios. N. Nakićenović and R. Swart, Eds., Cambridge University Press, 570 pp.

  • Nijssen, B., Lettenmaier D. P. , Liang X. , Wetzel S. W. , and Wood E. F. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., Westerling A. L. , and Oyler J. , 2013: Future humidity trends over the western United States in the CMIP5 global climate models and the variable infiltration capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, doi:10.5194/hess-17-1833-2013.

    • Search Google Scholar
    • Export Citation
  • Qin, D. H., Qin Y. Y. , Li X. Y. , Ding Y. H. , and Ding Y. J. , 2005: Climate and Environment Changes in China Volume I: Climate and Environment Changes in China and Their Projections (in Chinese). Science Press, 46 pp.

  • Raff, D. A., Pruitt T. , and Brekke L. D. , 2009: A framework for assessing flood frequency based on climate projection information. Hydrol. Earth Syst. Sci., 13, 21192136, doi:10.5194/hess-13-2119-2009.

    • Search Google Scholar
    • Export Citation
  • Reynard, N. S., Prudhomme C. , and Crooks S. M. , 2001: The flood characteristics of large UK rivers: Potential effects of changing climate and land use. Climatic Change, 48, 343359, doi:10.1023/A:1010735726818.

    • Search Google Scholar
    • Export Citation
  • Roy, L., Leconte R. , Brissette F. P. , and Marche C. , 2001: The impact of climate change on seasonal floods of a southern Quebec river basin. Hydrol. Processes, 15, 31673179, doi:10.1002/hyp.323.

    • Search Google Scholar
    • Export Citation
  • Saurral, R., 2010: The hydrologic cycle of the La Plata basin in the WCRP-CMIP3 multimodel dataset. J. Hydrometeor., 11, 10831102, doi:10.1175/2010JHM1178.1.

    • Search Google Scholar
    • Export Citation
  • Schreider, S. Y., Smith D. I. , and Jakeman A. J. , 2000: Climate change impacts on urban flooding. Climatic Change, 47, 91115, doi:10.1023/A:1005621523177.

    • Search Google Scholar
    • Export Citation
  • Smith, A., Bates P. , Freer J. , and Wetterhall F. , 2014: Investigating the application of climate models in flood projection across the UK. Hydrol. Process.,28, 2810–2823, doi:10.1002/hyp.9815.

  • Smith, I., Syktus J. , McAlpine C. , and Wong K. , 2013: Squeezing information from regional climate change projections-results from a synthesis of CMIP5 results for south-east Queensland, Australia. Climatic Change, 121, 609619, doi:10.1007/s10584-013-0956-4.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., Seth A. , and Garcia M. , 2010: Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J. Geophys. Res., 115, D08103, doi:10.1029/2009JD012718.

    • Search Google Scholar
    • Export Citation
  • Tisseuil, C., Vrac M. , Lek S. , and Wade A. J. , 2010: Statistical downscaling of river flows. J. Hydrol., 385, 279291, doi:10.1016/j.jhydrol.2010.02.030.

    • Search Google Scholar
    • Export Citation
  • Tung, C., 2001: Climate change impacts on water resources of the Tsengwen Creek watershed in Taiwan. J. Amer. Water Resour. Assoc., 37, 167176, doi:10.1111/j.1752-1688.2001.tb05483.x.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., Paillard D. , and Naveau P. , 2007: Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Climate Past, 3, 669682, doi:10.5194/cp-3-669-2007.

    • Search Google Scholar
    • Export Citation
  • Wang, G. Q., and Coauthors, 2012: Assessing water resources in China using PRECIS projections and a VIC model. Hydrol. Earth Syst. Sci., 16, 231240, doi:10.5194/hess-16-231-2012.

    • Search Google Scholar
    • Export Citation
  • Wang, G. Q., and Coauthors, 2013: Simulating the Impact of Climate Change on Runoff in a typical river catchment of the Loess Plateau, China. J. Hydrometeor., 14, 15531561, doi:10.1175/JHM-D-12-081.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L. N., Shao G. X. , Chen X. H. , Li Y. , and Wang D. G. , 2012: Flood changes during the past 50 years in Wujiang River, South China. Hydrol. Processes, 26, 35613569, doi:10.1002/hyp.8451.

    • Search Google Scholar
    • Export Citation
  • Wu, C. H., Huang G. R. , Yu H. J. , Chen Z. Q. , and Ma J. G. , 2014: Spatial and temporal distributions of trends in climate extremes of the Feilaixia catchment in the upstream area of the Beijiang River basin, south China. Int. J. Climatol., doi:10.1002/joc.3900, in press.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. Y., Lu G. H. , Wen L. , Lin C. A. , Zhang J. , and Yang Y. , 2007: Thirty-five year (1971–2005) simulation of daily soil moisture using the Variable Infiltration Capacity model over China. Atmos.–Ocean, 45, 3745, doi:10.3137/ao.450103.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. Y., Lu G. H. , Wen L. , and Lin C. A. , 2011: Reconstructing and analyzing China’s fifty-nine year (1951–2009) drought history using hydrological model simulation. Hydrol. Earth Syst. Sci., 15, 28812894, doi:10.5194/hess-15-2881-2011.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. Y., Lu G. H. , Liu Z. Y. , Wang J. X. , and Xiao H. , 2013: Trends of extreme flood events in the Pearl River basin during 1951–2010. Adv. Climate Change Res., 4, 110116.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., Lu G. H. , Wu Z. Y. , and Liu Z. Y. , 2013: Flood response to climate change in the Pearl River basin for the next three decades (in Chinese with English abstract). J. Hydraul. Eng., 12, 14091419.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., Yuan F. , Duan Q. , Zheng J. , Liang M. , and Chen F. , 2007: Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. J. Hydrometeor., 8, 447468, doi:10.1175/JHM568.1.

    • Search Google Scholar
    • Export Citation
  • Yang, C., Yan Z. , and Shao Y. , 2012: Probabilistic precipitation forecasting based on ensemble output using generalized additive models and Bayesian model averaging. Acta Meteor. Sin., 26, 112, doi:10.1007/s13351-012-0101-8.

    • Search Google Scholar
    • Export Citation
  • Yu, P. S., and Wang Y. C. , 2009: Impact of climate change on hydrological processes over a basin scale in northern Taiwan. Hydrol. Processes, 23, 35563568, doi:10.1002/hyp.7456.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1693 935 58
PDF Downloads 434 99 12