Snowpack Changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 Global Climate Models

Silvia Terzago Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Silvia Terzago in
Current site
Google Scholar
PubMed
Close
,
Jost von Hardenberg Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Jost von Hardenberg in
Current site
Google Scholar
PubMed
Close
,
Elisa Palazzi Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Elisa Palazzi in
Current site
Google Scholar
PubMed
Close
, and
Antonello Provenzale Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Antonello Provenzale in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hindu Kush, Karakoram, and Himalaya (HKKH) mountain ranges feed the most important Asian river systems, providing water to about 1.5 billion people. As a consequence, changes in snow dynamics in this area could severely impact water availability for downstream populations. Despite their importance, the amount, spatial distribution, and seasonality of snow in the HKKH region are still poorly known, owing to the limited availability of surface observations in this remote and high-elevation area. This work considers global climate models (GCM) participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and analyzes how they represent current and future snowpack in the HKKH region in terms of snow depth and snow water equivalent. It is found that models with high spatial resolution (up to 1.25°) simulate a spatial pattern of the winter snowpack in greater agreement with each other, with observations, with reanalysis datasets, and with the orographic features of the region, compared to most lower-resolution models. The seasonal cycle of snow depth displays a unimodal regime, with a maximum in February–March and almost complete melting in summer. The models generally indicate thicker [in Hindu Kush–Karakoram (HKK)] or comparable (in the Himalayas) snow depth and higher snow water equivalent compared to the reanalyses for the control period 1980–2005. Future projections, evaluated in terms of the ensemble mean of GCM simulations, indicate a significant reduction in the spatial average of snow depth over the HKK and an even stronger decrease in the Himalayas, where a reduction between 25% and 50% is expected by the end of the twenty-first century.

Corresponding author address: Silvia Terzago, Institute of Atmospheric Sciences and Climate (ISAC-CNR), Corso Fiume 4, 10133 Turin, Italy. E-mail: s.terzago@isac.cnr.it

Abstract

The Hindu Kush, Karakoram, and Himalaya (HKKH) mountain ranges feed the most important Asian river systems, providing water to about 1.5 billion people. As a consequence, changes in snow dynamics in this area could severely impact water availability for downstream populations. Despite their importance, the amount, spatial distribution, and seasonality of snow in the HKKH region are still poorly known, owing to the limited availability of surface observations in this remote and high-elevation area. This work considers global climate models (GCM) participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and analyzes how they represent current and future snowpack in the HKKH region in terms of snow depth and snow water equivalent. It is found that models with high spatial resolution (up to 1.25°) simulate a spatial pattern of the winter snowpack in greater agreement with each other, with observations, with reanalysis datasets, and with the orographic features of the region, compared to most lower-resolution models. The seasonal cycle of snow depth displays a unimodal regime, with a maximum in February–March and almost complete melting in summer. The models generally indicate thicker [in Hindu Kush–Karakoram (HKK)] or comparable (in the Himalayas) snow depth and higher snow water equivalent compared to the reanalyses for the control period 1980–2005. Future projections, evaluated in terms of the ensemble mean of GCM simulations, indicate a significant reduction in the spatial average of snow depth over the HKK and an even stronger decrease in the Himalayas, where a reduction between 25% and 50% is expected by the end of the twenty-first century.

Corresponding author address: Silvia Terzago, Institute of Atmospheric Sciences and Climate (ISAC-CNR), Corso Fiume 4, 10133 Turin, Italy. E-mail: s.terzago@isac.cnr.it
Save
  • Archer, D. R., and Fowler H. , 2004: Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci., 8, 4761, doi:10.5194/hess-8-47-2004.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R., Brodzik M. , Knowles K. , and Savoie M. , 2005: Global monthly EASE-Grid snow water equivalent climatology [1979–2005]. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0271.]

  • Arora, V., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2012: ERA-Interim/Land: A global land-surface reanalysis based on ERA-Interim meteorological forcing. ERA Rep. Series 13, ECMWF, 25 pp.

  • Balsamo, G., and Coauthors, 2013: ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci. Discuss., 10, 14 70514 745, doi:10.5194/hessd-10-14705-2013.

    • Search Google Scholar
    • Export Citation
  • Bao, X., and Zhang F. , 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206–214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 932.

    • Search Google Scholar
    • Export Citation
  • Bishop, M., Bush A. , Collier E. , Copland L. , Haritashya U. , John S. , Swenson S. , and Wahr J. , 2008: Advancing glaciers and positive mass anomaly in the Karakoram Himalaya, Pakistan. Eos, Trans. Amer. Geophys. Union,89 (Fall Meeting Suppl.), Abstract C32B-04.

  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, doi:10.1126/science.1215828.

  • Bookhagen, B., and Burbank D. , 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res.,115, F03019, doi:10.1029/2009JF001426.

  • Brown, R., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data [1998–2011]. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0447.]

  • Brutel-Vuilmet, C., Menegoz M. , and Krinner G. , 2013: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere, 7, 6780, doi:10.5194/tc-7-67-2013.

    • Search Google Scholar
    • Export Citation
  • Collier, M., and Coauthors, 2011: The CSIRO-Mk3. 6.0 Atmosphere–Ocean GCM: Participation in CMIP5 and data publication. Proc. 19th Int. Congress on Modelling and Simulation, Perth, Australia, MSSANZ, 2691–2697. [Available online at www.mssanz.org.au/modsim2011/F5/collier.pdf.]

  • Collins, W., and Coauthors, 2011: Development and evaluation of an Earth-system model–HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dahe, Q., Shiyin L. , and Peiji L. , 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19, 1820–1833, doi:10.1175/JCLI3694.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Balsamo G. , Viterbo P. , Miranda P. M. , Beljaars A. , Schär C. , and Elder K. , 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Search Google Scholar
    • Export Citation
  • Gardelle, J., Berthier E. , and Arnaud Y. , 2012: Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5, 322325, doi:10.1038/ngeo1450.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Hastings, D., and Dunbar P. , 1999: Global Land One-kilometer Base Elevation (GLOBE) digital elevation model documentation, volume 1.0. Key to Geophysical Records Doc. 34, NOAA/NESDIS/NGDC, Boulder, CO, 139 pp. [Available online at www.ngdc.noaa.gov/mgg/topo/report/globedocumentationmanual.pdf.]

  • Hazeleger, W., and Coauthors, 2012: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Hewitt, K., 2005: The Karakoram anomaly? Glacier expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt. Res. Dev., 25, 332340, doi:10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hewitt, K., 2011: Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt. Res. Dev., 31, 188200, doi:10.1659/MRD-JOURNAL-D-11-00020.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Johns, T., and Coauthors, 2003: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dyn., 20, 583612, doi:10.1007/s00382-002-0296-y.

    • Search Google Scholar
    • Export Citation
  • Kääb, A., Berthier E. , Nuth C. , Gardelle J. , and Arnaud Y. , 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, doi:10.1038/nature11324.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Liniger, H., Weingartner R. , and Grosjean M. , 1998: Mountains of the world: Water towers for the 21st century. Tech. Rep., Centre for Development and Environment, University of Bern, Bern, Switzerland, 32 pp.

  • Ma, L., Zhang T. , Frauenfeld O. , Ye B. , Yang D. , and Qin D. , 2009: Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res., 114, D09105, doi:10.1029/2008JD011178.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Palazzi, E., von Hardenberg J. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., Xu L. , and Salomonson V. V. , 2007: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett.,34, L06706, doi:10.1029/2007gl029262.

  • Putkonen, J. K., 2004: Continuous snow and rain data at 500 to 4400 m altitude near Annapurna, Nepal, 1999–2001. Arct. Antarct. Alp. Res., 36, 244248, doi:10.1657/1523-0430(2004)036[0244:CSARDA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., Zheng Y. , Zhang Y. , and Miao M. Q. , 2003: Responses of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau. Int. J. Climatol., 23, 593613, doi:10.1002/joc.901.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., Song Z. , Bao Y. , Song Y. , Shu Q. , Huang C. , and Zhao W. , 2013: Development and evaluation of an Earth System Model with surface gravity waves. J. Geophys. Res. Oceans, 118, 4514–4524, doi:10.1002/jgrc.20327.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., and Coauthors, 2012: MIROC4—A new high-resolution atmosphere–ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, doi:10.2151/jmsj.2012-301.

    • Search Google Scholar
    • Export Citation
  • Sarikaya, M. A., Bishop M. P. , Shroder J. F. , and Olsenholler J. A. , 2012: Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sens. Lett., 3, 7784, doi:10.1080/01431161.2010.536181.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153–192, doi:10.1175/JCLI3612.1.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Singh, P., Ramasastri K. , and Kumar N. , 1995: Topographical influence on precipitation distribution in different ranges of Western Himalayas. Nord. Hydrol., 26, 259284.

    • Search Google Scholar
    • Export Citation
  • Sneyers, R., 1990: On the statistical analysis of series of observation. Tech. Note 143, WMO, 192 pp.

  • Su, F., Duan X. , Chen D. , Hao Z. , and Cuo L. , 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208, doi:10.1175/JCLI-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Syed, F. S., Giorgi F. , Pal J. S. , and King M. P. , 2006: Effect of remote forcings on the winter precipitation of central southwest Asia part 1: Observations. Theor. Appl. Climatol., 86, 147160, doi:10.1007/s00704-005-0217-1.

    • Search Google Scholar
    • Export Citation
  • Tahir, A., Chevallier P. , Arnaud Y. , and Ahmad B. , 2011: Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, northern Pakistan. Hydrol. Earth Syst. Sci., 15, 2275–2290, doi:10.5194/hess-15-2275-2011.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., Kelly R. , Foster J. , and Chang A. , 2004: AMSR-E/Aqua Daily L3 global snow water equivalent EASE-Grids, version 2 [2002–2011]. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/ae_swe_ease-grids.gd.html.]

  • van den Hurk, B. J., Viterbo P. , Beljaars A. , and Betts A. , 2000: Offline validation of the ERA40 surface scheme. Tech. Memo. 295, ECMWF, 42 pp. [Available online at www.knmi.nl/publications/fulltexts/tm295.pdf.]

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Volodin, E., Dianskii N. , and Gusev A. , 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Winiger, M., Gumpert M. , and Yamout H. , 2005: Karakorum–Hindukush–western Himalaya: Assessing high-altitude water resources. Hydrol. Processes, 19, 23292338, doi:10.1002/hyp.5887.

    • Search Google Scholar
    • Export Citation
  • Wu, T.-W., and Qian Z.-A. , 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16, 2038–2051, doi:10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, T.-W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 43264347, doi:10.1002/jgrd.50320.

    • Search Google Scholar
    • Export Citation
  • Yao, T., Pu J. , Lu A. , Wang Y. , and Yu W. , 2007: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res., 39, 642650, doi:10.1657/1523-0430(07-510)[YAO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Third Pole Environment (TPE). Environ. Dev., 3, 5264, doi:10.1016/j.envdev.2012.04.002.

  • You, Q., Kang S. , Ren G. , Fraedrich K. , Pepin N. , Yan Y. , and Ma L. , 2011: Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Climate Res., 46, 171183, doi:10.3354/cr00985.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., Adachi Y. , and Hosaka M. , 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 918 135 11
PDF Downloads 595 83 8