Assessment of SCaMPR and NEXRAD Q2 Precipitation Estimates Using Oklahoma Mesonet Observations

Ronald Stenz Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Ronald Stenz in
Current site
Google Scholar
PubMed
Close
,
Xiquan Dong Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Xiquan Dong in
Current site
Google Scholar
PubMed
Close
,
Baike Xi Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Baike Xi in
Current site
Google Scholar
PubMed
Close
, and
Robert J. Kuligowski NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

Search for other papers by Robert J. Kuligowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although satellite precipitation estimates provide valuable information for weather and flood forecasts, infrared (IR) brightness temperature (BT)-based algorithms often produce large errors for precipitation detection and estimation during deep convective systems (DCSs). As DCSs produce greatly varying precipitation rates below similar IR BT retrievals, using IR BTs alone to estimate precipitation in DCSs is problematic. Classifying a DCS into convective-core (CC), stratiform (SR), and anvil cloud (AC) regions allows an evaluation of estimated precipitation distributions among DCS components to supplement typical quantitative precipitation estimate (QPE) evaluations and to diagnose these IR-based algorithm biases. This paper assesses the performance of the National Mosaic and Multi-Sensor Next Generation Quantitative Precipitation Estimation System (NMQ Q2), and a simplified version of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm, over the state of Oklahoma using Oklahoma Mesonet observations. While average annual Q2 precipitation estimates were about 35% higher than Mesonet observations, strong correlations exist between these two datasets for multiple temporal and spatial scales. Additionally, the Q2-estimated precipitation distribution among DCS components strongly resembled the Mesonet-observed distribution, indicating Q2 can accurately capture the precipitation characteristics of DCSs despite its wet bias. SCaMPR retrievals were typically 3–4 times higher than Mesonet observations, with relatively weak correlations during 2012. Overestimates from SCaMPR retrievals were primarily caused by precipitation retrievals from the anvil regions of DCSs when collocated Mesonet stations recorded no precipitation. A modified SCaMPR retrieval algorithm, employing both cloud optical depth and IR temperature, has the potential to make significant improvements to reduce the wet bias of SCaMPR retrievals over anvil regions of a DCS.

Corresponding author address: Professor Xiquan Dong, Department of Atmospheric Sciences, University of North Dakota, 4149 University Ave., MS 9006, Grand Forks, ND 58203-9006. E-mail: dong@aero.und.edu

Abstract

Although satellite precipitation estimates provide valuable information for weather and flood forecasts, infrared (IR) brightness temperature (BT)-based algorithms often produce large errors for precipitation detection and estimation during deep convective systems (DCSs). As DCSs produce greatly varying precipitation rates below similar IR BT retrievals, using IR BTs alone to estimate precipitation in DCSs is problematic. Classifying a DCS into convective-core (CC), stratiform (SR), and anvil cloud (AC) regions allows an evaluation of estimated precipitation distributions among DCS components to supplement typical quantitative precipitation estimate (QPE) evaluations and to diagnose these IR-based algorithm biases. This paper assesses the performance of the National Mosaic and Multi-Sensor Next Generation Quantitative Precipitation Estimation System (NMQ Q2), and a simplified version of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm, over the state of Oklahoma using Oklahoma Mesonet observations. While average annual Q2 precipitation estimates were about 35% higher than Mesonet observations, strong correlations exist between these two datasets for multiple temporal and spatial scales. Additionally, the Q2-estimated precipitation distribution among DCS components strongly resembled the Mesonet-observed distribution, indicating Q2 can accurately capture the precipitation characteristics of DCSs despite its wet bias. SCaMPR retrievals were typically 3–4 times higher than Mesonet observations, with relatively weak correlations during 2012. Overestimates from SCaMPR retrievals were primarily caused by precipitation retrievals from the anvil regions of DCSs when collocated Mesonet stations recorded no precipitation. A modified SCaMPR retrieval algorithm, employing both cloud optical depth and IR temperature, has the potential to make significant improvements to reduce the wet bias of SCaMPR retrievals over anvil regions of a DCS.

Corresponding author address: Professor Xiquan Dong, Department of Atmospheric Sciences, University of North Dakota, 4149 University Ave., MS 9006, Grand Forks, ND 58203-9006. E-mail: dong@aero.und.edu
Save
  • Adler, F. R., and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., Petersen W. , Llort X. , and Vasiloff S. , 2012: Multiplatform comparisons of rain intensity for extreme precipitation events. IEEE Trans. Geosci. Remote Sens., 50, 675686, doi:10.1109/TGRS.2011.2162737.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., Creutin J. D. , Delrieu G. , and Faure D. , 1997: Use of a weather radar for the hydrology of a mountainous area. Part I: Radar measurements interpretation. J. Hydrol., 193, 125, doi:10.1016/S0022-1694(96)03202-7.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070, doi:10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation and uncertainty estimation of NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., Dong X. , Xi B. , Schumacher C. , Minnis P. , and Khaiyer M. , 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., Dong X. , Xi B. , McFarlane S. , Kennedy A. , Lin B. , and Minnis P. , 2012: Life cycle of deep convective systems in a Lagrangian framework. J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , Negri A. , and Huffman G. J. , 2007: Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Humphrey, M. D., Istok J. D. , Lee J. Y. , Hevesi J. A. , and Flint A. L. , 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14, 15131519, doi:10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Islam, T., and Rico-Ramirez M. A. , 2013: An overview of the remote sensing of precipitation with polarimetric radar. Prog. Phys. Geogr., 38, 55–78, doi:10.1177/0309133313514993.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, doi:10.1175/JHM-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Kondragunta, C. R., Kitzmiller D. , Seo D. J. , and Shrestha K. , 2005: Objective integration of satellite, rain gauge, and radar precipitation estimates in the multisensor precipitation estimator algorithm. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., P2.8. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_86219.htm.]

  • Krajewski, W., and Smith J. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for rainfall rate (QPE). NOAA/NESDIS/STAR Rep., 44 pp. [Available online at www.goes-r.gov/products/ATBDs/baseline/Hydro_RRQPE_v2.0_no_color.pdf.]

  • Langston, C., Zhang J. , and Howard K. , 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R., Zhang J. , Gourley J. , and Howard K. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and Adler R. F. , 1981: Relationship of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300, doi:10.1175/1520-0450(1981)020<0288:ROSBTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., Ryzhkov A. V. , Zrnić D. S. , and Kim K.-E. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Kuligowski R. J. , 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18, 10371051, doi:10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1985: Correction of precipitation measurements. Proc. Workshop on the Correction of Precipitation Measurements, Zurich, Switzerland, WMO/IAHS/ETH, 1323.

  • Smith, J. A., Seo D. J. , Baeck M. L. , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, doi:10.1029/96WR00270.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Houze R. A. , and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Smith J. A. , Burges S. J. , Alonso C. V. , and Darden R. W. , 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35, 24872503, doi:10.1029/1999WR900142.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Ebert E. E. , Oh H.-J. , Sohn B.-J. , Levizzani V. , Smith E. A. , and Ferraro R. , 2003: Validation of an operational global precipitation analysis at short time scales. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., JP1.2. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56865.htm.]

  • Turton, J. D., Bennetts D. A. , and Farmer S. F. G. , 1988: An introduction to radio ducting. Meteor. Mag., 117, 245254.

  • Vicente, G. A., Scofield R. A. , and Menzel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 18831898, doi:10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. , 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, doi:10.1007/s10712-009-9079-x.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Dong X. , Xi B. , Feng Z. , Kennedy A. , Mullendore G. , Gilmore M. , and Tao W.-K. , 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 119–11 135, doi:10.1002/jgrd.50798.

    • Search Google Scholar
    • Export Citation
  • Wu, W., Kitzmiller D. , and Wu S. , 2012: Evaluation of radar precipitation estimates from the National Mosaic and Multisensor Quantitative Precipitation Estimation System and the WSR-88D precipitation processing system over the conterminous United States. J. Hydrometeor., 13, 10801093, doi:10.1175/JHM-D-11-064.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Qi Y. , 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Howard K. , and Gourley J. J. , 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2014: Initial operating capabilities of quantitative precipitation estimation in the multi-radar multi-sensor system. 28th Conf. of Hydrology, Atlanta, GA, Amer. Meteor. Soc., JP5.3. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper240487.html.]

  • Zhang, Y., Seo D.-J. , Kitzmiller D. , Lee H. , Kuligowski R. J. , Kim D. , and Kondragunta C. R. , 2013: Comparative strengths of SCaMPR satellite QPEs with and without TRMM ingest versus gridded gauge-only analyses. J. Hydrometeor., 14, 153170, doi:10.1175/JHM-D-12-053.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Melnikov V. M. , and Ryzhkov A. V. , 2006: Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J. Atmos. Oceanic Technol., 23, 381394, doi:10.1175/JTECH1856.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 670 444 149
PDF Downloads 127 29 4