Utilization of Specific Attenuation for Tropical Rainfall Estimation in Complex Terrain

Yadong Wang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yadong Wang in
Current site
Google Scholar
PubMed
Close
,
Pengfei Zhang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Pengfei Zhang in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
,
Jian Zhang NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jian Zhang in
Current site
Google Scholar
PubMed
Close
, and
Pao-Liang Chang Central Weather Bureau, Taipei, Taiwan

Search for other papers by Pao-Liang Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To improve the accuracy of quantitative precipitation estimation (QPE) in complex terrain, a new rainfall rate estimation algorithm has been developed and applied on two C-band dual-polarization radars in Taiwan. In this algorithm, the specific attenuation A is utilized in the rainfall rate R estimation, and the parameters used in the R(A) method were estimated using the local drop size distribution (DSD) and drop shape relation (DSR) observations. In areas of complex terrain where the lowest antenna tilt is completely blocked, observations from higher tilts are used in radar QPE. Correction of the vertical profile of rain rate estimated by the R(A) algorithm (VPRA) is applied to account for the vertical variability of rain. It has been found that the VPRA correction improved the accuracy of estimated rainfall in severely blocked areas. The R(A)–VPRA scheme was tested for different precipitation cases including typhoon, stratiform, and convective rain. Compared to existing rainfall estimation algorithms such as rainfall–reflectivity (RZ) and rainfall–specific differential phase (RKDP), the new method is able to provide accurate and robust rainfall estimates when the radar reflectivity is miscalibrated or significantly biased by attenuation or when the lower tilt of the radar beam is significantly blocked.

Corresponding author address: Yadong Wang, CIMMS, 120 David L. Boren Dr., Norman, OK 73072. E-mail: yadong.wang@noaa.gov

Abstract

To improve the accuracy of quantitative precipitation estimation (QPE) in complex terrain, a new rainfall rate estimation algorithm has been developed and applied on two C-band dual-polarization radars in Taiwan. In this algorithm, the specific attenuation A is utilized in the rainfall rate R estimation, and the parameters used in the R(A) method were estimated using the local drop size distribution (DSD) and drop shape relation (DSR) observations. In areas of complex terrain where the lowest antenna tilt is completely blocked, observations from higher tilts are used in radar QPE. Correction of the vertical profile of rain rate estimated by the R(A) algorithm (VPRA) is applied to account for the vertical variability of rain. It has been found that the VPRA correction improved the accuracy of estimated rainfall in severely blocked areas. The R(A)–VPRA scheme was tested for different precipitation cases including typhoon, stratiform, and convective rain. Compared to existing rainfall estimation algorithms such as rainfall–reflectivity (RZ) and rainfall–specific differential phase (RKDP), the new method is able to provide accurate and robust rainfall estimates when the radar reflectivity is miscalibrated or significantly biased by attenuation or when the lower tilt of the radar beam is significantly blocked.

Corresponding author address: Yadong Wang, CIMMS, 120 David L. Boren Dr., Norman, OK 73072. E-mail: yadong.wang@noaa.gov
Save
  • Andrieu, H., and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, doi:10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and Mossop S. C. , 1960: Calibration of a weather radar by using standard target. Bull. Amer. Meteor. Soc., 41, 377382.

  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Balakrishnan N. , and Zrnić D. S. , 1990: An example of propagation effects in rainfall on polarimetric variables at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Thurai M. , and Hannesen R. , 2005: Dual-Polarization Weather Radar Handbook. 2nd ed. Neuss, 163 pp.

  • Bringi, V. N., Rico-Ramirez M. A. , and Thurai M. , 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, doi:10.1175/JHM-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Rutledge S. A. , Ahijevych D. A. , and Keenan T. D. , 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P.-L., Lin P.-F. , Jou B. J.-D. , and Zhang J. , 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrain. J. Atmos. Oceanic Technol., 26, 13151327, doi:10.1175/2009JTECHA1162.1.

    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., Wang T.-C. C. , and Lin P.-L. , 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, doi:10.1175/2009JTECHA1236.1.

    • Search Google Scholar
    • Export Citation
  • Chisholm, J., 1963: Frequency shift reflector. U.S. Patent 3108275. [Available online at www.google.com/patents/US3108275.]

  • Gorgucci, E., Scarchilli G. , and Chandrasekar V. , 1992: Calibration of radars using polarimetric technique. IEEE Trans. Geosci. Remote Sens., 30, 853858, doi:10.1109/36.175319.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., Scarchilli G. , and Chandrasekar V. , 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, doi:10.1109/36.739161.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Illingworth A. J. , and Tabary P. , 2009: Absolute calibration of radar reflectivity using redundancy of the polarization observations and implied constraints on drop shapes. J. Atmos. Oceanic Technol., 26, 689703, doi:10.1175/2008JTECHA1152.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1992: The effect of temperature on attenuation correction schemes in rain using polarization propagation differential phase shift. J. Appl. Meteor., 31, 11061118, doi:10.1175/1520-0450(1992)031<1106:TEOTOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joss, J., Thams J. C. , and Waldvogel A. , 1968: The accuracy of daily rainfall measurements by radar. Preprints, 13th Radar Meteorology Conf., Montreal, QC, Canada, Amer. Meteor. Soc., 448451.

  • Liou, Y.-C., and Chang Y.-J. , 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 39924010, doi:10.1175/2009MWR2980.1.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Vulpiani G. , and Picciotti E. , 2004: Rain field and reflectivity vertical profile reconstruction from C-band radar volumetric data. IEEE Trans. Geosci. Remote Sens., 42, 10331046, doi:10.1109/TGRS.2003.820313.

    • Search Google Scholar
    • Export Citation
  • Park, S. G., Maki M. , Iwanami K. , Bringi V. N. , and Chandrasekar V. , 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, doi:10.1175/JTECH1804.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnić D. S. , 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, doi:10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , Melnikov V. M. , and Schuur T. J. , 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Diederich M. , Zhang P. , and Simmer C. , 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599–619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, G., Gorgucci E. , Chandrasekar V. , and Dobaie A. , 1996: Self consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens., 34, 2226, doi:10.1109/36.481887.

    • Search Google Scholar
    • Export Citation
  • Stratmann, E., Atlas D. , Richter J. H. , and Jensen D. R. , 1971: Sensitivity calibration of a dual-beam vertically pointing FM-CW radar. J. Appl. Meteor., 10, 12601265, doi:10.1175/1520-0450(1971)010<1260:SCOADB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Le Bouar E. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Zhang J. , Ryzhkov A. V. , and Tang L. , 2013: C-band polarimetric radar QPEs based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Oceanic Technol., 30, 13541370, doi:10.1175/JTECH-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825839, doi:10.1103/PhysRevD.3.825.

    • Search Google Scholar
    • Export Citation
  • Xu, W., Zipser E. J. , Chen Y.-L. , Liu C. , Liou Y.-C. , Lee W.-C. , and Jou B. J.-D. , 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 25552574, doi:10.1175/MWR-D-11-00208.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Howard K. , and Zhang J. , 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, doi:10.1175/2007JHM954.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Viekanandan J. , and Brandes E. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841, doi:10.1109/36.917906.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Langston C. , and Howard K. , 2008a: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 18591872, doi:10.1175/2008JTECHA1039.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2008b: High-resolution QPE system for Taiwan. Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer-Verlag, 147–162.

  • Zhang, J., Qi Y. , Kingsmill D. , and Howard K. , 2012: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA Hydrometeorology Testbed. J. Hydrometeor., 13, 18361854, doi:10.1175/JHM-D-11-0145.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Ryzhkov A. V. , 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, doi:10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1303 632 40
PDF Downloads 381 78 7