Multi-Index Rain Detection: A New Approach for Regional Rain Area Detection from Remotely Sensed Data

Shruti Upadhyaya Remote Sensing Division, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India

Search for other papers by Shruti Upadhyaya in
Current site
Google Scholar
PubMed
Close
and
R. Ramsankaran Remote Sensing Division, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India

Search for other papers by R. Ramsankaran in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this article, a new approach called Multi-Index Rain Detection (MIRD) is suggested for regional rain area detection and was tested for India using Kalpana-1 satellite data. The approach was developed based on the following hypothesis: better results should be obtained for combined indices than an individual index. Different combinations (scenarios) were developed by combining six commonly used rain detection indices using AND and OR logical connectives. For the study region, an optimal rain area detection scenario and optimal threshold values of the indices were found through a statistical multi-decision-making technique called the Technique for Order Preference by Similarity Ideal Solution (TOPSIS). The TOPSIS analysis was carried out based on independent categorical statistics like probability of detection, probability of no detection, and Heidke skill score. It is noteworthy that for the first time in literature, an attempt has been made (through sensitivity analysis) to understand the influence of the proportion of rain/no-rain pixels in the calibration/validation dataset on a few commonly used statistics. Thus, the obtained results have been used to identify the above-mentioned independent categorical statistics. Based on the results obtained and the validation carried out with different independent datasets, scenario 8 (TIRt < 260 K and TIRt − WVt < 19 K, where TIRt and WVt are the brightness temperatures from thermal IR and water vapor, respectively) is found to be an optimal rain detection index. The obtained results also indicate that the texture-based indices [standard deviation and mean of 5 × 5 pixels at time t (mean5)] did not perform well, perhaps because of the coarse resolution of Kalpana-1 data. It is also to be noted that scenario 8 performs much better than the Roca method used in the Indian National Satellite (INSAT) Multispectral Rainfall Algorithm (IMSRA) developed for India.

Corresponding author address: Dr. R. Ramsankaran, Remote Sensing Division, Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. E-mail: ramsankaran@civil.iitb.ac.in

Abstract

In this article, a new approach called Multi-Index Rain Detection (MIRD) is suggested for regional rain area detection and was tested for India using Kalpana-1 satellite data. The approach was developed based on the following hypothesis: better results should be obtained for combined indices than an individual index. Different combinations (scenarios) were developed by combining six commonly used rain detection indices using AND and OR logical connectives. For the study region, an optimal rain area detection scenario and optimal threshold values of the indices were found through a statistical multi-decision-making technique called the Technique for Order Preference by Similarity Ideal Solution (TOPSIS). The TOPSIS analysis was carried out based on independent categorical statistics like probability of detection, probability of no detection, and Heidke skill score. It is noteworthy that for the first time in literature, an attempt has been made (through sensitivity analysis) to understand the influence of the proportion of rain/no-rain pixels in the calibration/validation dataset on a few commonly used statistics. Thus, the obtained results have been used to identify the above-mentioned independent categorical statistics. Based on the results obtained and the validation carried out with different independent datasets, scenario 8 (TIRt < 260 K and TIRt − WVt < 19 K, where TIRt and WVt are the brightness temperatures from thermal IR and water vapor, respectively) is found to be an optimal rain detection index. The obtained results also indicate that the texture-based indices [standard deviation and mean of 5 × 5 pixels at time t (mean5)] did not perform well, perhaps because of the coarse resolution of Kalpana-1 data. It is also to be noted that scenario 8 performs much better than the Roca method used in the Indian National Satellite (INSAT) Multispectral Rainfall Algorithm (IMSRA) developed for India.

Corresponding author address: Dr. R. Ramsankaran, Remote Sensing Division, Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. E-mail: ramsankaran@civil.iitb.ac.in
Save
  • Adler, R. F., Negri A. J. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32, 335356, doi:10.1175/1520-0450(1993)032<0335:EOMROJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Huffman G. J. , Bolvin D. T. , Curtis S. , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39, 20072023, doi:10.1175/1520-0450(2001)040<2007:TRDDUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–1984. Mon. Wea. Rev., 115, 5174, doi:10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ba, M., and Gruber A. , 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40, 15001514, doi:10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Hsu K. L. , Imam B. , Sorooshian S. , and Kuligowski R. , 2009: Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10, 684700, doi:10.1175/2009JHM1077.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, S., Chan C. W. , and Huang G. H. , 2002: Using multiple criteria decision analysis for supporting decision of solid waste management. J. Environ. Sci. Health, Part A: Environ. Sci. Eng., 37, 975990, doi:10.1081/ESE-120004517.

    • Search Google Scholar
    • Export Citation
  • Chu, T. C., 2002: Facility location selection using fuzzy TOPSIS under group decision. Int. J. Uncertainty Fuzziness Knowl. Based Syst., 10, 687701, doi:10.1142/S0218488502001739.

    • Search Google Scholar
    • Export Citation
  • Deng, H., Yeh C. H. , and Willis R. J. , 2000: Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res., 27, 963973, doi:10.1016/S0305-0548(99)00069-6.

    • Search Google Scholar
    • Export Citation
  • Haile, A. T., Rientjes T. H. , Gieske A. , and Gebremichael M. , 2010: Rainfall estimation at the source of the Blue Nile: A multispectral remote sensing approach. Int. J. Appl. Earth Obs. Geoinf., 12, S76S83, doi:10.1016/j.jag.2009.09.001.

    • Search Google Scholar
    • Export Citation
  • Holl, G., Buehler S. A. , Rydberg B. , and Jimenez C. , 2010: Collocating satellite-based radar and radiometer measurements—Methodology and usage examples. Atmos. Meas. Tech., 3, 693708, doi:10.5194/amt-3-693-2010.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, S.-S., Huan J.-S. , and Lee S. E. , 2007: An extension of TOPSIS for group decision making. Math. Comput. Modell., 45, 801813, doi:10.1016/j.mcm.2006.03.023.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jahanshahloo, G. R., Lotfi F. H. , and Izadikhah M. , 2006: An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl. Math. Comput., 175, 13751384, doi:10.1016/j.amc.2005.08.048.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalinga, A. K., and Gan T. Y. , 2010: Estimation of rainfall from infrared-microwave satellite data for basin-scale hydrologic modelling. Hydrol. Processes, 24, 20682086, doi:10.1002/hyp.7626.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., Appelhans T. , Thies B. , and Nauss T. , 2014: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ., 141, 129143, doi:10.1016/j.rse.2013.10.026.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112130, doi:10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. , and Kwiatowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milani, A. S., Shanian A. , and Madoliat R. , 2005: The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection. Struct. Multidiscip. Optim., 29, 312318, doi:10.1007/s00158-004-0473-1.

    • Search Google Scholar
    • Export Citation
  • Mishra, A., Gairola R. M. , Varma A. K. , and Agarwal V. K. , 2009: Study of intense rainfall events over India using Kalpana-IR and TRMM precipitation radar observations. Int. J. Curr. Sci., 97, 689695.

    • Search Google Scholar
    • Export Citation
  • Mishra, A., Gairola R. M. , Varma A. K. , and Agarwal V. K. , 2010: Remote sensing of precipitation over Indian land and oceanic regions by synergistic use of multi-satellite sensors. J. Geophys. Res., 115, D08106, doi:10.1029/2009JD012157.

    • Search Google Scholar
    • Export Citation
  • Nair, S., Srinivasan G. , and Nemani R. , 2009: Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J. Meteor. Soc. Japan, 87, 927939, doi:10.2151/jmsj.87.927.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., Mahesh C. , Gairola R. M. , and Pal P. K. , 2010: Estimation of Indian summer monsoon rainfall using Kalpana-1 VHRR data and its validation using rain gauge and GPCP data. Meteor. Atmos. Phys., 110, 4557, doi:10.1007/s00703-010-0106-8.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., Sathiyamoorthy V. , Mahesh C. , and Gairola R. M. , 2014: An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. Int. J. Remote Sens., 35, 30183035, doi:10.1080/01431161.2014.894661.

    • Search Google Scholar
    • Export Citation
  • Roca, R., Viollier M. , Picon L. , and Desbois M. , 2002: A multisatellite analysis of deep convection and its moist environment over the Indian Ocean during the winter monsoon. J. Geophys. Res., 107, 8012, doi:10.1029/2000JD000040.

    • Search Google Scholar
    • Export Citation
  • Srdjevic, B., Medeiros Y. D. P. , and Faria A. S. , 2004: An objective multi-criteria evaluation of water management scenarios. Water Resour. Manage., 18, 3554, doi:10.1023/B:WARM.0000015348.88832.52.

    • Search Google Scholar
    • Export Citation
  • Thies, B., Nauss T. , and Bendix J. , 2008: Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI nighttime data. Meteor. Appl., 15, 219230, doi:10.1002/met.56.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., Kidd C. , Kniveton D. , and Bellerby T. J. , 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18, 742755, doi:10.1175/1520-0469(2001)058<0742:ACSIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., Scofield R. A. , and Mensel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 18831898, doi:10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoon, K., and Hwang C. L. , 1985: Manufacturing plant location analysis by multiple attribute decision making: Part I—Single-plant strategy. Int. J. Prod. Res., 23, 345359, doi:10.1080/00207548508904712.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 113 7
PDF Downloads 181 69 1