Evaluating LSM-Based Water Budgets over a West African Basin Assisted with a River Routing Scheme

Augusto C. V. Getirana CNRM-GAME, Météo-France, Toulouse, France

Search for other papers by Augusto C. V. Getirana in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone CNRM-GAME, Météo-France, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
, and
Christophe Peugeot Hydrosciences, Montpellier, France

Search for other papers by Christophe Peugeot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Ouémé River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum–Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region, a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005–08 AMMA field campaign period during which rainfall and streamflow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily streamflow at five gauges within the basin. Results demonstrate that the RRS simulates streamflow at all gauges with relative errors varying from −20% to 3% and Nash–Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the subbasin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated streamflows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Augusto Getirana, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: augusto.getirana@nasa.gov

Abstract

Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Ouémé River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum–Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region, a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005–08 AMMA field campaign period during which rainfall and streamflow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily streamflow at five gauges within the basin. Results demonstrate that the RRS simulates streamflow at all gauges with relative errors varying from −20% to 3% and Nash–Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the subbasin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated streamflows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Augusto Getirana, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: augusto.getirana@nasa.gov
Save
  • Boone, A., Calvet J.-C. , and Noilhan J. , 1999: Inclusion of a third soil layer in a land-surface scheme using the force–restore method. J. Appl. Meteor., 38, 16111630, doi:10.1175/1520-0450(1999)038<1611:IOATSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme Intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009a: AMMA Land Surface Model Intercomparison Project Phase 2 (ALMIP-2). Gewex News, Vol. 9, No. 4, International GEWEX Project Office, Silver Spring, MD, 910. [Available online at www.gewex.org/images/Nov2009.pdf.]

  • Boone, A., and Coauthors, 2009b: The AMMA Land Surface Model Intercomparison Project. Bull. Amer. Meteor. Soc., 90, 18651880, doi:10.1175/2009BAMS2786.1.

    • Search Google Scholar
    • Export Citation
  • Boyle, D. P., Gupta H. V. , and Sorooshian S. , 2000: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res., 36, 36633674, doi:10.1029/2000WR900207.

    • Search Google Scholar
    • Export Citation
  • Canadell, J., Jackson R. B. , Ehleringer J. R. , Mooney H. A. , Sala O. E. , and Schulze E. D. , 1996: Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583–595, doi:10.1007/BF00329030.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1988. Applied Hydrology. McGraw-Hill, 572 pp.

  • Coe, M. T., Costa M. H. , and Howard E. A. , 2008: Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterization. Hydrol. Processes, 22, 25422553, doi:10.1002/hyp.6850.

    • Search Google Scholar
    • Export Citation
  • Collischonn, W., Allasia D. , Silva B. C. , and Tucci C. E. M. , 2007: The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrol. Sci. J., 52, 878895, doi:10.1623/hysj.52.5.878.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Papa F. , Faroux S. , Douville H. , and Prigent C. , 2012: Global off-line evaluation of the ISBA-TRIP flood model. Climate Dyn., 38, 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • Depraetere, C., Gosset M. , Ploix S. , and Laurent H. , 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999–2006 on the Upper Ouémé Valley (Benin). J. Hydrol., 375, 143–160, doi:10.1016/j.jhydrol.2009.01.011.

    • Search Google Scholar
    • Export Citation
  • Descloitres, M., Séguis L. , Legchenko A. , Wubda M. , Guyot A. , and Cohard J.-M. , 2011: The contribution of MRS and resistivity methods to the interpretation of actual evapo-transpiration measurements: A case study in metamorphic context in north Bénin. Near Surf. Geophys.,9, 187–200, doi:10.3997/1873-0604.2011003.

  • Desconnets, J. C., Taupin J. D. , Lebel T. , and Leduc C. , 1997: Hydrology of the HAPEX-Sahel Central Super-Site: Surface water drainage and aquifer recharge through the pool systems. J. Hydrol., 188–189, 155–178, doi:10.1016/S0022-1694(96)03158-7.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Gaiser, T., and Coauthors, 2008: Development of a regional model for integrated management of water resources at the basin scale. Phys. Chem. Earth, 33, 175–182, doi:10.1016/j.pce.2007.04.018.

    • Search Google Scholar
    • Export Citation
  • Geiger, B., Meurey C. , Lajas D. , Franchistéguy L. , Carrer D. , and Roujean J.-L. , 2008: Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteor. Appl., 15, 411420, doi:10.1002/met.84.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Bonnet M.-P. , Rotunno Filho O. C. , Mansur W. J. , Collischonn W. , Guyot J.-L. , and Seyler F. , 2010: Hydrological modeling and water balance of the Negro River basin: Evaluation with observed data and spatial altimetry. Hydrol. Processes, 24, 32193236, doi:10.1002/hyp.7747.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , Yamazaki D. , Decharme B. , Papa F. , and Mognard N. , 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, doi:10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , Yamazaki D. , and Mognard N. , 2013: Automatic parameterization of a flow routing scheme driven by radar altimetry data: Evaluation in the Amazon basin. Water Resour. Res., 49, 614–629, doi:10.1002/wrcr.20077.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., and Coauthors, 2014: Water balance in the Amazon basin from a land surface model ensemble. J. Hydrometeor., doi:10.1175/JHM-D-14-0068.1, in press.

    • Search Google Scholar
    • Export Citation
  • Giertz, S., Diekkrueger B. , and Steup G. , 2006: Physically-based modelling of hydrological processes in a tropical headwater catchment (West Africa)—Process representation and multi-criteria validation. Hydrol. Earth Syst. Sci., 10, 829–847, doi:10.5194/hess-10-829-2006.

    • Search Google Scholar
    • Export Citation
  • Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley-Longman, 412 pp.

  • Habets, F., Etchevers R. , Golaz C. , Leblois E. , Ledoux E. , Martin E. , Noilhan J. , and Ottle C. , 1999: Simulation of the water budget and the river flows of the Rhone basin. J. Geophys. Res., 104, 31 14531 172, doi:10.1029/1999JD901008.

    • Search Google Scholar
    • Export Citation
  • Kamagaté, B., Séguis L. , Favreau G. , Seidel J.-L. , Descloitres M. , and Affaton P. , 2007: Processus et bilan des flux hydriques d’un bassin versant de milieu tropical de socle au Benin (Donga, haut Ouémé). C. R. Geosci., 339, 418429, doi:10.1016/j.crte.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • Kaptué Tchuenté, A. T., De Jong S. M. , Roujean J. L. , Favier C. , and Mering C. , 2011: Ecosystem mapping at the African continent scale using a hybrid clustering approach based on 1-km resolution multi-annual data from SPOT/VEGETATION. Remote Sens. Environ., 115, 452464, doi:10.1016/j.rse.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Kirpich, Z. P., 1940: Concentration time of small agricultural catchments. Civ. Eng., 10, 362.

  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West Africa: An overview. J. Hydrol., 375, 313, doi:10.1016/j.jhydrol.2009.03.020.

    • Search Google Scholar
    • Export Citation
  • Leduc, C., Bromley J. , and Schroeter P. , 1997: Water table fluctuation and recharge in semi-arid climate: Some results of the HAPEX-Sahel hydrodynamic survey (Niger). J. Hydrol., 188–189, 123–138, doi:10.1016/S0022-1694(96)03156-3.

    • Search Google Scholar
    • Export Citation
  • Le Lay, M., Saulnier G.-M. , Galle S. , Seguis L. , Metadier M. , and Peugeot C. , 2008: Model representation of the Sudanian hydrological processes: Application on the Donga catchment (Benin). J. Hydrol., 363, 3241, doi:10.1016/j.jhydrol.2008.09.006.

    • Search Google Scholar
    • Export Citation
  • Li, H., Wigmosta M. S. , Wu H. , Huang M. , Ke Y. , Coleman A. M. , and Leung L. R. , 2013: A physically based runoff routing model for land surface and earth system models. J. Hydrometeor., 14, 808828, doi:10.1175/JHM-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 1998: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes. Global Planet. Change, 19, 161179, doi:10.1016/S0921-8181(98)00046-0.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 externalized platform for the simulation of Earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., Holmes T. R. H. , De Jeu R. A. M. , Gash J. H. , Meesters A. G. C. A. , and Dolman A. J. , 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, doi:10.5194/hess-15-453-2011.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Heinsch F. A. , Zhao M. , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Zhao M. , and Running S. W. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J.-F. , 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Ponce, V. M., 1989: Engineering Hydrology: Principles and Practices. Prentice-Hall, 627 pp.

  • Ponce, V. M., and Yevjevich V. , 1978: Muskingum–Cunge method with variable parameters. J. Hydraul. Div., 104, 16631667.

  • Redelsperger, J.-L., Thorncroft C. D. , Diedhiou A. , Lebel T. , Parker D. J. , and Polcher J. , 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, doi:10.1175/BAMS-87-12-1739.

    • Search Google Scholar
    • Export Citation
  • Richard, A., Galle S. , Descloitres M. , Cohard J.-M. , Vandervaere J.-P. , Séguis L. , and Peugeot C. , 2013: Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin). Hydrol. Earth Syst. Sci., 17, 50795096, doi:10.5194/hess-17-5079-2013.

    • Search Google Scholar
    • Export Citation
  • Schaefli, B., and Gupta H. V. , 2007: Do Nash values have value? Hydrol. Processes, 21, 20752080, doi:10.1002/hyp.6825.

  • Séguis, L., and Coauthors, 2011: Origins of streamflow in a crystalline basement catchment in a sub-humid Sudanian zone: The Donga basin (Benin, West Africa): Inter-annual variability of water budget. J. Hydrol., 402, 1–13, doi:10.1016/j.jhydrol.2011.01.054.

    • Search Google Scholar
    • Export Citation
  • Trambauer, P., Dutra E. , Maskey S. , Werner M. , Pappenberger F. , van Beek L. P. H. , and Uhlenbrook S. , 2014: Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci., 18, 193–212, doi:10.5194/hess-18-193-2014.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., and Coauthors, 2011: The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725–2744, doi:10.1080/01431161003743199.

    • Search Google Scholar
    • Export Citation
  • Tucci, C. E. M., 1998. Modelos Hidrológicos. ABRH-UFRGS, 669 pp.

  • Varado, N., Braud I. , Galle S. , Le Lay M. , Séguis L. , Kamagaté B. , and Depraetere C. , 2006: Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin) using a downward approach of model complexity. Hydrol. Earth Syst. Sci., 10, 427442, doi:10.5194/hess-10-427-2006.

    • Search Google Scholar
    • Export Citation
  • Vischel, T., Lebel T. , Massuel S. , and Cappelaere B. , 2009: Conditional simulation schemes of rain fields and their application to rainfall–runoff modeling studies in the Sahel. J. Hydrol., 375, 273286, doi:10.1016/j.jhydrol.2009.02.028.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., Gupta H. V. , and Sorooshian S. , 1997: A multiobjective global optimization algorithm with application to calibration of hydrologic models. HWR Tech. Rep. 97-050, Dept. of Hydrology and Water Resources, University of Arizona, Tucson, AZ, 203 pp.

  • Yapo, P. O., Gupta H. V. , and Sorooshian S. , 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397, doi:10.1016/S0022-1694(97)00107-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1223 710 174
PDF Downloads 155 40 2