The Use of Snow-Level Observations Derived from Vertically Profiling Radars to Assess Hydrometeorological Characteristics and Forecasts over Washington’s Green River Basin

Paul J. Neiman NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Gottas NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Daniel J. Gottas in
Current site
Google Scholar
PubMed
Close
,
Allen B. White NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Allen B. White in
Current site
Google Scholar
PubMed
Close
,
Lawrence J. Schick U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Lawrence J. Schick in
Current site
Google Scholar
PubMed
Close
, and
F. Martin Ralph Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two vertically pointing S-band radars (coastal and inland) were operated in western Washington during two winters to monitor brightband snow-level altitudes. Similar snow-level characteristics existed at both sites, although the inland site exhibited lower snow levels by ~70 m because of proximity to cold continental air, and snow-level altitude changes were delayed there by several hours owing to onshore translation of weather systems. The largest precipitation accumulations and rates occurred when the snow level was largely higher than the adjacent terrain. A comparison of these observations with long-term operational radiosonde data reveals that the radar snow levels mirrored climatological conditions. The inland radar data were used to assess the performance of nearby operational freezing-level forecasts. The forecasts possessed a lower-than-observed bias of 100–250 m because of a combination of forecast error and imperfect representativeness between the forecast and observing points. These forecast discrepancies increased in magnitude with higher observed freezing levels, thus representing the hydrologically impactful situations where a greater fraction of mountain basins receive rain rather than snow and generate more runoff than anticipated. Vertical directional wind shear calculations derived from wind-profiler data, and concurrent surface temperature data, reveal that most snow-level forecast discrepancies occurred with warm advection aloft and low-level cold advection through the Stampede Gap. With warm advection, forecasts were too high (low) for observed snow levels below (above) 1.25 km MSL. An analysis of sea level pressure differences across the Cascades indicated that mean forecasts were too high (low) for observed snow levels below (above) 1.25 km MSL when higher pressure was west (east) of the range.

Corresponding author address: Paul J. Neiman, NOAA/ESRL/Physical Sciences Division, 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov

Abstract

Two vertically pointing S-band radars (coastal and inland) were operated in western Washington during two winters to monitor brightband snow-level altitudes. Similar snow-level characteristics existed at both sites, although the inland site exhibited lower snow levels by ~70 m because of proximity to cold continental air, and snow-level altitude changes were delayed there by several hours owing to onshore translation of weather systems. The largest precipitation accumulations and rates occurred when the snow level was largely higher than the adjacent terrain. A comparison of these observations with long-term operational radiosonde data reveals that the radar snow levels mirrored climatological conditions. The inland radar data were used to assess the performance of nearby operational freezing-level forecasts. The forecasts possessed a lower-than-observed bias of 100–250 m because of a combination of forecast error and imperfect representativeness between the forecast and observing points. These forecast discrepancies increased in magnitude with higher observed freezing levels, thus representing the hydrologically impactful situations where a greater fraction of mountain basins receive rain rather than snow and generate more runoff than anticipated. Vertical directional wind shear calculations derived from wind-profiler data, and concurrent surface temperature data, reveal that most snow-level forecast discrepancies occurred with warm advection aloft and low-level cold advection through the Stampede Gap. With warm advection, forecasts were too high (low) for observed snow levels below (above) 1.25 km MSL. An analysis of sea level pressure differences across the Cascades indicated that mean forecasts were too high (low) for observed snow levels below (above) 1.25 km MSL when higher pressure was west (east) of the range.

Corresponding author address: Paul J. Neiman, NOAA/ESRL/Physical Sciences Division, 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov
Save
  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 279 pp.

  • Braun, S. A., Houze R. A. Jr., and Smull B. F. , 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast. Mon. Wea. Rev., 125, 31313156, doi:10.1175/1520-0493(1997)125<3131:ADDOOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. S. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9771001, doi:10.1029/95RS00649.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Mass C. F. , and Westrick K. J. , 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15, 730744, doi:10.1175/1520-0434(2000)015<0730:MPVOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., Ralph F. M. , and Moore B. J. , 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. , 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., Dettinger M. D. , and Cayan D. , 2006: Trends in snowfall versus rainfall for the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Neiman P. J. , Martner B. E. , White A. B. , Gottas D. J. , and Ralph F. M. , 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, doi:10.1175/2007JHM853.1.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., Neiman P. J. , and White A. B. , 2007: Collocated radar and radiosonde observations of a double brightband melting layer in northern California. Mon. Wea. Rev., 135, 20162024, doi:10.1175/MWR3383.1.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173, doi:10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mastin, M. C., Gendaszek A. S. , and Barnas C. R. , 2010: Magnitude and extent of flooding at selected river reaches in western Washington, January 2009. USGS Scientific Investigations Rep. 2010-5177, 34 pp. [Available online at http://pubs.usgs.gov/sir/2010/5177/.]

  • Medina, S., Smull B. F. , Houze R. A. Jr., and Steiner M. , 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, doi:10.1175/JAS3554.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., 2010: The sensitivity of mountain snowpack accumulation to climate warming. J. Climate, 23, 26342650, doi:10.1175/2009JCLI3263.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., and Kingsmill D. E. , 2013: Mesoscale variability of the atmospheric snow line over the northern Sierra Nevada: Multiyear statistics, case study, and mechanisms. J. Atmos. Sci., 70, 916938, doi:10.1175/JAS-D-12-0194.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , Roe G. H. , and Anders A. M. , 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, doi:10.1002/qj.258.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , and Roe G. H. , 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, doi:10.1175/JAS-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and Shapiro M. A. , 1989: Retrieving horizontal temperature gradients and advections from single-station wind profiler observations. Wea. Forecasting, 4, 222233, doi:10.1175/1520-0434(1989)004<0222:RHTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , White A. B. , Parrish D. D. , Holloway J. S. , and Bartels D. L. , 2006: A multiwinter analysis of channeled flow through a prominent gap along the northern California coast during CALJET and PACJET. Mon. Wea. Rev., 134, 18151841, doi:10.1175/MWR3148.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, doi:10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Moore B. J. , Hughes M. , Mahoney K. M. , Cordeira J. , and Dettinger M. D. , 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part 1: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickmann K. , and Reynolds D. M. , 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Smith, G. F., and Page D. , 1993: Interactive forecasting with the National Weather Service River Forecast System. Proc. Third National Technology Transfer Conf. and Exposition, Vol. 1, NASA Conf. Publ. 3189, Baltimore, MD, NASA, 527536.

  • Steenburgh, W. J., Mass C. F. , and Ferguson S. A. , 1997: The influence of terrain-induced circulations on wintertime temperature and snow level in the Washington Cascades. Wea. Forecasting, 12, 208227, doi:10.1175/1520-0434(1997)012<0208:TIOTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Bousquet O. , Houze R. A. Jr., Smull B. F. , and Mancini M. , 2003: Airflow within major Alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129, 411431, doi:10.1256/qj.02.08.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., Marwitz J. D. , Pace J. C. , and Carbone R. E. , 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237, doi:10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trabant, D. C., and Clagett G. P. , 1990: Measurement and evaluation of snowpacks. Cold Regions Hydrology and Hydraulics, W. L. Ryan and R. D. Crissman, Eds., American Society of Civil Engineers, 39–93.

  • Weber, B. L., Wuertz D. B. , Welsh D. C. , and McPeek R. , 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464, doi:10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Jordan J. R. , Martner B. E. , Ralph F. M. , and Bartram B. W. , 2000: Extending the dynamic range of an S-band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17, 12261234, doi:10.1175/1520-0426(2000)017<1226:ETDROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Gottas D. J. , Strem E. T. , Ralph F. M. , and Neiman P. J. , 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697, doi:10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Gottas D. J. , Henkel A. F. , Neiman P. J. , Ralph F. M. , and Gutman S. I. , 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753, doi:10.1175/2009JHM1181.1.

    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2012: NOAA’s rapid response to the Howard A. Hanson Dam flood risk management crisis. Bull. Amer. Meteor. Soc., 93, 189207, doi:10.1175/BAMS-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 63 6
PDF Downloads 119 53 4