New Estimates of Variations in Water Flux and Storage over Europe Based on Regional (Re)Analyses and Multisensor Observations

Anne Springer Institute of Geodesy and Geoinformation, Bonn University, and Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Bonn, Germany

Search for other papers by Anne Springer in
Current site
Google Scholar
PubMed
Close
,
Jürgen Kusche Institute of Geodesy and Geoinformation, Bonn University, Bonn, Germany

Search for other papers by Jürgen Kusche in
Current site
Google Scholar
PubMed
Close
,
Kerstin Hartung Meteorological Institute, Stockholm University, Stockholm, Sweden

Search for other papers by Kerstin Hartung in
Current site
Google Scholar
PubMed
Close
,
Christan Ohlwein Hans-Ertel Centre for Weather Research, Climate Monitoring Branch, Meteorological Institute, Bonn University, Bonn, Germany

Search for other papers by Christan Ohlwein in
Current site
Google Scholar
PubMed
Close
, and
Laurent Longuevergne CNRS, UMR 6118, Geosciences Rennes, Rennes, France

Search for other papers by Laurent Longuevergne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation minus evapotranspiration, the net flux of water between the atmosphere and Earth’s surface, links atmospheric and terrestrial water budgets and thus represents an important boundary condition for both climate modeling and hydrological studies. However, the atmospheric–terrestrial flux is poorly constrained by direct observations because of a lack of unbiased measurements. Thus, it is usually reconstructed from atmospheric reanalyses. Via the terrestrial water budget equation, water storage estimates from the Gravity Recovery and Climate Experiment (GRACE) combined with measured river discharge can be used to assess the realism of the atmospheric–terrestrial flux in models. In this contribution, the closure of the terrestrial water budget is assessed over a number of European river basins using the recently reprocessed GRACE release 05 data, together with precipitation and evapotranspiration from the operational analyses of high-resolution, limited-area NWP models [Consortium for Small-Scale Modelling, German version (COSMO-DE) and European version (COSMO-EU)] and the new COSMO 6-km reanalysis (COSMO-REA6) for the European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain. These closures are compared to those obtained with global reanalyses, land surface models, and observation-based datasets. The spatial resolution achieved with the recent GRACE data allows for better evaluation of the water budget in smaller river basins than before and for the identification of biases up to 25 mm month−1 in the different products. Variations of deseasoned and detrended atmospheric–terrestrial flux are found to agree notably well with flux derived from GRACE and discharge data with correlations up to 0.75. Finally, bias-corrected fluxes are derived from various data combinations, and from this, a 20-yr time series of catchment-integrated water storage variations is reconstructed.

Corresponding author address: Anne Springer, Astronomical, Physical and Mathematical Geodesy Group, Institute of Geodesy and Geoinformation (IGG), Bonn University, Nußallee 17, 53115 Bonn, Germany. E-mail: springer@geod.uni-bonn.de

Abstract

Precipitation minus evapotranspiration, the net flux of water between the atmosphere and Earth’s surface, links atmospheric and terrestrial water budgets and thus represents an important boundary condition for both climate modeling and hydrological studies. However, the atmospheric–terrestrial flux is poorly constrained by direct observations because of a lack of unbiased measurements. Thus, it is usually reconstructed from atmospheric reanalyses. Via the terrestrial water budget equation, water storage estimates from the Gravity Recovery and Climate Experiment (GRACE) combined with measured river discharge can be used to assess the realism of the atmospheric–terrestrial flux in models. In this contribution, the closure of the terrestrial water budget is assessed over a number of European river basins using the recently reprocessed GRACE release 05 data, together with precipitation and evapotranspiration from the operational analyses of high-resolution, limited-area NWP models [Consortium for Small-Scale Modelling, German version (COSMO-DE) and European version (COSMO-EU)] and the new COSMO 6-km reanalysis (COSMO-REA6) for the European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain. These closures are compared to those obtained with global reanalyses, land surface models, and observation-based datasets. The spatial resolution achieved with the recent GRACE data allows for better evaluation of the water budget in smaller river basins than before and for the identification of biases up to 25 mm month−1 in the different products. Variations of deseasoned and detrended atmospheric–terrestrial flux are found to agree notably well with flux derived from GRACE and discharge data with correlations up to 0.75. Finally, bias-corrected fluxes are derived from various data combinations, and from this, a 20-yr time series of catchment-integrated water storage variations is reconstructed.

Corresponding author address: Anne Springer, Astronomical, Physical and Mathematical Geodesy Group, Institute of Geodesy and Geoinformation (IGG), Bonn University, Nußallee 17, 53115 Bonn, Germany. E-mail: springer@geod.uni-bonn.de
Save
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim archive, version 2.0. ERA Rep. Series 1, European Centre for Medium Range Weather Forecasts, 23 pp.

  • Chambers, D. P., and Bonin J. A. , 2012: Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci., 9, 21872214, doi:10.5194/os-8-859-2012.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., and Tapley B. D. , 2004: Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res.,109, B09402, doi:10.1029/2004JB003028.

  • Coumou, D., and Rahmstorf S. , 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, doi:10.1038/nclimate1452.

  • Dahle, C., Flechtner F. , Gruber C. , König D. , König R. , Michalak G. , and Neumayer K.-H. , 2013: GFZ GRACE level-2 processing standards document for level-2 product release 0005: Revised edition. Scientific Tech. Rep. STR12/02, 21 pp., doi:10.2312/GFZ.b103-1202-25.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Fersch, B., Kunstmann H. , Bárdossy A. , Devaraju B. , and Sneeuw N. , 2012: Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations. J. Hydrometeor., 13, 15891603, doi:10.1175/JHM-D-11-0143.1.

    • Search Google Scholar
    • Export Citation
  • Gegout, P., cited2014: Load Love numbers. [Available online at http://gemini.gsfc.nasa.gov/aplo/Load_Love2_CM.dat.]

  • Güntner, A., 2008: Improvement of global hydrological models using GRACE data. Surv. Geophys., 29, 375397, doi:10.1007/s10712-008-9038-y.

    • Search Google Scholar
    • Export Citation
  • Hall, J., and Coauthors, 2013: Understanding flood regime changes in Europe: A state of the art assessment. Hydrol. Earth Syst. Sci., 10, 15 52515 624, doi:10.5194/hessd-10-15525-2013.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., Viterbo P. , and Seneviratne S. I. , 2006: Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophys. Res. Lett.,33, L21401, doi:10.1029/2006GL027659.

  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res.,116, D02102, doi:10.1029/2010JD014545.

  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Klees, R., Zapreeva E. A. , Winsemius H. C. , and Savenije H. H. G. , 2007: The bias in GRACE estimates of continental water storage variations. Hydrol. Earth Syst. Sci., 11, 12271241, doi:10.5194/hess-11-1227-2007.

    • Search Google Scholar
    • Export Citation
  • Klemann, V., and Martinec Z. , 2011: Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics, 511, 99108, doi:10.1016/j.tecto.2009.08.031.

    • Search Google Scholar
    • Export Citation
  • Kusche, J., 2007: Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., 81, 733749, doi:10.1007/s00190-007-0143-3.

    • Search Google Scholar
    • Export Citation
  • Long, D., Longuevergne L. , and Scanlon B. R. , 2014: Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 11311151, doi:10.1002/2013WR014581.

    • Search Google Scholar
    • Export Citation
  • Longuevergne, L., Scanlon B. , and Wilson C. R. , 2010: GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res.,46, W11517, doi:10.1029/2009WR008564.

  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Lucchesi, R., 2012: File specification for MERRA products. GMAO Office Note No. 1 (version 2.3), Global Modeling and Assimilation Office, 83 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi528.pdf.]

  • Miralles, D. G., De Jeu R. A. M. , Gash J. H. , Holmes T. R. H. , and Dolman A. J. , 2011: Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci., 15, 967981, doi:10.5194/hess-15-967-2011.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett.,38, L06402, doi:10.1029/2010GL046230.

  • Pan, M., Sahoo A. K. , Troy T. J. , Vinukollu R. K. , Sheffield J. , and Wood E. F. , 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206, doi:10.1175/JCLI-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Priestley, C., and Taylor R. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramilien, G., Frappart F. , Günter A. , Ngo-Duc T. , Cazenave A. , and Laval K. , 2006: Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res.,42, W10403, doi:10.1029/2005WR004331.

  • Reichle, R. H., Koster R. D. , Lannoy G. J. M. D. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Tourè A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASAs Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rietbroek, R., Fritsche M. , Brunnabend S.-E. , Daras I. , Kusche J. , Schröter J. , Flechtner F. , and Dietrich R. , 2012: Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J. Geodyn., 59–60, 6471, doi:10.1016/j.jog.2011.02.003.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., McWilliams E. B. , Famiglietti J. S. , Beaudoing H. K. , and Nigro J. , 2011: Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes, 25, 40824092, doi:10.1002/hyp.8369.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., Wolters E. L. A. , Meirink J. F. , and Leinse H. , 2012: Triple collocation of summer precipitation retrievals from SEVIRI over Europe with gridded rain gauge and weather radar data. J. Hydrometeor., 13, 15521566, doi:10.1175/JHM-D-11-089.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Rudolf B. , and Ziese M. , 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, Offenbach, Germany, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Schraff, C. H., 1997: Mesoscale data assimilation and prediction of low stratus in the Alpine region. Meteor. Atmos. Phys., 64, 2150, doi:10.1007/BF01044128.

    • Search Google Scholar
    • Export Citation
  • Seitz, F., Schmidt M. , and Shum C. K. , 2008: Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations. Earth Planet. Sci. Lett., 268, 165170, doi:10.1016/j.epsl.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , and Chambers D. P. , 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240, doi:10.1175/2008JHM993.1.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Ries J. C. , Thompson P. F. , and Watkins M. M. , 2004: GRACE measurements of mass variability in the earth system. Science, 305, 503505, doi:10.1126/science.1099192.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climatic change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Wahr, J., Molenaar M. , and Bryan F. , 1998: Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30 20530 229, doi:10.1029/98JB02844.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., Swenson S. , and Velicogna I. , 2006: Accuracy of grace mass estimates. Geophys. Res. Lett.,33, L06401, doi:10.1029/2005GL025305.

  • Wang, K., and Dickinson R. E. , 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2050, doi:10.1029/2011RG000373.

    • Search Google Scholar
    • Export Citation
  • Werth, S., and Güntner A. , 2010: Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol. Earth Syst. Sci., 14, 5978, doi:10.5194/hess-14-59-2010.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., 2008: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeor., 9, 535548, doi:10.1175/2007JHM951.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1361 928 38
PDF Downloads 352 59 1