Differences between the Surface Precipitation Estimates from the TRMM Precipitation Radar and Passive Microwave Radiometer Version 7 Products

Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
and
Edward Zipser Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Edward Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With 15 yr of the Tropical Rainfall Measuring Mission (TRMM) observations, the passive microwave radiometers [TRMM Microwave Imager (TMI)] and the precipitation radar (PR) report a close geographical distribution of annual precipitation between 36°S and 36°N. However, large discrepancies between PR and TMI precipitation retrievals are also found over several specific regions, such as central Africa, the Amazon, the tropical east Pacific, and north Indian Ocean. To understand these discrepancies, the PR near-surface and the TMI surface precipitation retrievals are compared at both pixel and precipitation system levels using collocated pixels and a precipitation feature database from 1998 to 2012. Over land, the TMI overestimates precipitation in deep and intense convective systems, but misses significant amounts of warm rainfall in shallow systems. Over the ocean, because of the partial beam filling of large footprints of the lower-frequency sensors, the TMI reports a larger precipitation area than the PR and underestimates the precipitation rate in the convective precipitation region. The TMI tends to overestimate precipitation compared to the PR in a large proportion of shallow systems over the tropical east Pacific and trade wind regions with large-scale descent. The PR tends to overestimate precipitation compared to the TMI in a large proportion of shallow systems over rainy oceans, such as the west Pacific and the Atlantic ITCZ. All these findings imply that there are still large uncertainties in the precipitation climatology over some regions. Further ground validation campaigns are still needed, especially over the ocean.

Corresponding author address: Dr. Chuntao Liu, Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412-5892. E-mail: chuntao.liu@tamucc.edu

Abstract

With 15 yr of the Tropical Rainfall Measuring Mission (TRMM) observations, the passive microwave radiometers [TRMM Microwave Imager (TMI)] and the precipitation radar (PR) report a close geographical distribution of annual precipitation between 36°S and 36°N. However, large discrepancies between PR and TMI precipitation retrievals are also found over several specific regions, such as central Africa, the Amazon, the tropical east Pacific, and north Indian Ocean. To understand these discrepancies, the PR near-surface and the TMI surface precipitation retrievals are compared at both pixel and precipitation system levels using collocated pixels and a precipitation feature database from 1998 to 2012. Over land, the TMI overestimates precipitation in deep and intense convective systems, but misses significant amounts of warm rainfall in shallow systems. Over the ocean, because of the partial beam filling of large footprints of the lower-frequency sensors, the TMI reports a larger precipitation area than the PR and underestimates the precipitation rate in the convective precipitation region. The TMI tends to overestimate precipitation compared to the PR in a large proportion of shallow systems over the tropical east Pacific and trade wind regions with large-scale descent. The PR tends to overestimate precipitation compared to the TMI in a large proportion of shallow systems over rainy oceans, such as the west Pacific and the Atlantic ITCZ. All these findings imply that there are still large uncertainties in the precipitation climatology over some regions. Further ground validation campaigns are still needed, especially over the ocean.

Corresponding author address: Dr. Chuntao Liu, Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412-5892. E-mail: chuntao.liu@tamucc.edu
Save
  • Arkin, P. A., Joyce R. J. , and Janowiak J. E. , 1994: IR techniques: GOES precipitation index. Remote Sens. Rev., 11, 107124, doi:10.1080/02757259409532261.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1990: Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference. Amer. Meteor. Soc., 806 pp.

  • Awaka, J., Iguchi T. , and Okamoto K. , 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. 8th URSI Commission F Triennial Open Symp. on Wave Propagation and Remote Sensing, Aveiro, Portugal, URSI, 143146.

  • Awaka, J., Iguchi T. , and Okamoto K. , 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan, 87A, 3152, doi:10.2151/jmsj.87A.31.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Kummerow C. , 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Haynes J. M. , 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190, doi:10.1175/JCLI3259.1.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735, doi:10.1029/97JD01210.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Smith E. A. , Berg W. , and Huffman G. J. , 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600, doi:10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2012: An evaluation of microwave land surface emissivities over the continental United Stated to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens.,51, 378–398, doi:10.1109/TGRS.2012.2199121.

  • Funk, A., and Schumacher C. , 2013: Analysis of rain classification over tropics by version 7 of TRMM 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, doi:10.2151/jmsj.2013-302.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Cuttis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one degree resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan,87, 1–30, doi:10.2151/jmsj.87A.1.

  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and L’Ecuyer T. S. , 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and Meneghini R. , 2009: Changes in the TRMM version-5 and version-7 precipitation radar products due to orbit boost. J. Meteor. Soc. Japan, 87A, 93107, doi:10.2151/jmsj.87A.93.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distribution based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2013: Regional variation of morphology of the organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, doi:10.1029/2012JD018409.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , Cecil D. J. , Nesbitt S. W. , and Sherwood S. , 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237, doi:10.1175/1520-0469(1954)011<0220:SROATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. Mc K. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Gruber A. , and Ba M. B. , 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679, doi:10.1175/1520-0450-39.5.666.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Zipser E. J. , and Kummerow C. D. , 2004: An examination of version 5 rainfall estimates from the TRMM microwave imager, precipitation radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43, 10161036, doi:10.1175/1520-0450(2004)043<1016:AEOVRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Li K. , 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part I: Algorithm description. J. Atmos. Oceanic Technol.,30, 2493–2508, doi:10.1175/JTECH-D-12-00144.1.

  • Riehl, H., and Malkus J. S. , 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Seo, E., Sohn B. , and Liu G. , 2007: How TRMM precipitation radar and microwave imager retrieved rain rates differ. Geophys. Res. Lett., 34, L24803, doi:10.1029/2007GL032331.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Sasaki H. , Okamoto K. , and Iguchi T. , 2006: Validation of rainfall estimates from the TRMM precipitation radar and microwave imager using a radiative transfer model: 1. Comparison of the version-5 and -6 products. Geophys. Res. Lett., 33, L13803, doi:10.1029/2006GL026350.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Kida S. , Ashiwake H. , Kubota T. , and Aonashi K. , 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and North G. , 1990: The beam filling error in the Nimbus 5 electronically scanning microwave radiometer observations of Global Atlantic Tropical Experiment rainfall. J. Geophys. Res., 95, 21872193, doi:10.1029/JD095iD03p02187.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and Nakamura K. , 2010: Effect of TRMM orbit boost on radar reflectivity distributions. J. Atmos. Oceanic Technol., 27, 12471254, doi:10.1175/2010JTECHA1426.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Houze R. A. Jr., and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tustison, B. D., Harris D. , and Foufoula-Georgiou E. , 2001: Scale issues in verification of precipitation forecasts. J. Geophys. Res., 106, 11 77511 784, doi:10.1029/2001JD900066.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Turk J. , and Bringi V. N. , 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, doi:10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wall, C., Liu C. , and Zipser E. , 2013: A climatology of tropical congestus using CloudSat. J. Geophys. Res. Atmos., 118, 64786492, doi:10.1002/jgrd.50455.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. J. , and Kummerow C. , 2009: The TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Wexler, R., and Swingle D. M. , 1947: Radar storm detection. Bull. Amer. Meteor. Soc., 28, 159167.

  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67, 12261232, doi:10.1175/1520-0477(1986)067<1226:SCOPMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., and Kummerow C. D. , 2009: Use of the TRMM-PR for estimating the TMI beam filling correction. J. Meteor. Soc. Japan, 87A, 255263, doi:10.2151/jmsj.87A.255.

    • Search Google Scholar
    • Export Citation
  • Xu, W., Zipser E. J. , and Liu C. , 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over south China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 42614275, doi:10.1175/2009MWR2982.1.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., Zipser E. J. , and Liu C. , 2014: TRMM-observed shallow versus deep convection in the eastern Pacific related to large-scale circulations in reanalysis datasets. J. Climate, 27, 55755592, doi:10.1175/JCLI-D-13-00315.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., McGauley M. , and Bond N. A. , 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, doi:10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multisensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., Liu C. , Cecil D. J. , Nesbitt S. W. , and Yorty D. P. , 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1230 674 17
PDF Downloads 281 36 2