Water Balance in the Amazon Basin from a Land Surface Model Ensemble

Augusto C. V. Getirana Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Augusto C. V. Getirana in
Current site
Google Scholar
PubMed
Close
,
Emanuel Dutra ECMWF, Reading, United Kingdom

Search for other papers by Emanuel Dutra in
Current site
Google Scholar
PubMed
Close
,
Matthieu Guimberteau L’Institut Pierre-Simon Laplace/CNRS, Paris, France

Search for other papers by Matthieu Guimberteau in
Current site
Google Scholar
PubMed
Close
,
Jonghun Kam Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Jonghun Kam in
Current site
Google Scholar
PubMed
Close
,
Hong-Yi Li Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Hong-Yi Li in
Current site
Google Scholar
PubMed
Close
,
Bertrand Decharme CNRM-GAME, Météo-France, Toulouse, France

Search for other papers by Bertrand Decharme in
Current site
Google Scholar
PubMed
Close
,
Zhengqiu Zhang University of California, Los Angeles, Los Angeles, California, and Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Zhengqiu Zhang in
Current site
Google Scholar
PubMed
Close
,
Agnes Ducharne L’Institut Pierre-Simon Laplace/CNRS, and UMR METIS, CNRS/Université Pierre et Marie Curie, Paris, France

Search for other papers by Agnes Ducharne in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone CNRM-GAME, Météo-France, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
,
Gianpaolo Balsamo ECMWF, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
,
Matthew Rodell Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew Rodell in
Current site
Google Scholar
PubMed
Close
,
Ally M. Toure Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ally M. Toure in
Current site
Google Scholar
PubMed
Close
,
Yongkang Xue University of California, Los Angeles, Los Angeles, California

Search for other papers by Yongkang Xue in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
Sujay V. Kumar Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Kristi Arsenault Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Kristi Arsenault in
Current site
Google Scholar
PubMed
Close
,
Guillaume Drapeau Université Paris Diderot, PRODIG, Paris, France

Search for other papers by Guillaume Drapeau in
Current site
Google Scholar
PubMed
Close
,
L. Ruby Leung Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Josyane Ronchail Université Paris Diderot, Universités Sorbonne Paris Cité et Sorbonne (Université Pierre et Marie Curie, Université Paris 06), CNRS/IRD/MNHN, LOCEAN, Paris, France

Search for other papers by Josyane Ronchail in
Current site
Google Scholar
PubMed
Close
, and
Justin Sheffield Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Justin Sheffield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1 and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

Corresponding author address: A.C.V. Getirana, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20009. E-mail: augusto.getirana@nasa.gov

Abstract

Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1 and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

Corresponding author address: A.C.V. Getirana, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20009. E-mail: augusto.getirana@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., Balsamo G. , de Rosnay P. , Muñoz-Sabater J. , and Boussetta S. , 2012: A bare ground evaporation revision in the ECMWF land-surface scheme: Evaluation of its impact using ground soil moisture and satellite microwave data. Hydrol. Earth Syst. Sci., 16, 36073620, doi:10.5194/hess-16-3607-2012.

    • Search Google Scholar
    • Export Citation
  • Alkama, M. R., Kageyama M. , Ramstein G. , Marti O. , Ribstein P. , and Swingedouw D. , 2008: Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate. Climate Dyn., 30, 855869, doi:10.1007/s00382-007-0330-1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , van den Hurk B. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor.,10, 623–643, doi:10.1175/2008JHM1068.1.

  • Balsamo, G., Boussetta S. , Dutra E. , Beljaars A. , Viterbo P. , and van den Hurk B. , 2011: Evolution of land surface processes in the IFS. ECMWF Newsletter, No. 127, ECMWF, Reading, United Kingdom, 17–22.

  • Beighley, R. E., Eggert K. G. , Dunne T. , He Y. , Gummadi V. , and Verdin K. L. , 2009: Simulating hydrologic and hydraulic processes throughout the Amazon River basin. Hydrol. Processes, 23, 12211235, doi:10.1002/hyp.7252.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., and Kirkby M. J. , 1979: A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, doi:10.1080/02626667909491834.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Oleson K. W. , Vertenstein M. , Levis S. , Zeng X. , Dai Y. , Dickinson R. E. , and Yang Z.-L. , 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009a: The AMMA Land Surface Model Intercomparison Project. Bull. Amer. Meteor. Soc., 90, 18651880, doi:10.1175/2009BAMS2786.1.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009b: AMMA Land Surface Model Intercomparison Project Phase 2 (ALMIP-2). Gewex News, Vol. 9, No. 4, International GEWEX Project Office, Silver Spring, MD, 9–10. [Available online at www.gewex.org/images/Nov2009.pdf.]

  • Boussetta, S., Balsamo G. , Beljaars A. , Kral T. , and Jarlan L. , 2013a: Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model. Int. J. Remote Sens., 34, 35203542, doi:10.1080/01431161.2012.716543.

    • Search Google Scholar
    • Export Citation
  • Boussetta, S., and Coauthors, 2013b: Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation. J. Geophys. Res. Atmos., 118, 59235946, doi:10.1002/jgrd.50488.

    • Search Google Scholar
    • Export Citation
  • Campoy, A., Ducharne A. , Chéruy F. , Hourdin F. , Polcher J. , and Dupont J. C. , 2013: Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J. Geophys. Res. Atmos., 118, 10 72510 739, doi:10.1002/jgrd.50627.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., Costa M. H. , Botta A. , and Birkett C. , 2002: Long-term simulations of discharge and floods in the Amazon basin. J. Geophys. Res., 107, 8044, doi:10.1029/2001JD000740.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., Costa M. H. , and Howard E. A. , 2008: Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterization. Hydrol. Processes, 22, 25422553, doi:10.1002/hyp.6850.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Foley J. A. , 1997: Water balance of the Amazon basin: Dependence on vegetation cover and canopy conductance. J. Geophys. Res., 102, 23 97323 989, doi:10.1029/97JD01865.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Foley J. A. , 1998: A comparison of precipitation datasets for the Amazon basin. Geophys. Res. Lett., 25, 155158, doi:10.1029/97GL03502.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Decharme, B., and Douville H. , 2007: Global validation of the ISBA sub-grid hydrology. Climate Dyn., 29, 2137, doi:10.1007/s00382-006-0216-7.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Papa F. , Faroux S. , Douville H. , and Prigent C. , 2012: Global off-line evaluation of the ISBA-TRIP flood model. Climate Dyn., 38, 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., Polcher J. , Bruen M. , and Laval K. , 2002: Impact of a physically based soil water flow and soil–plant interaction representation for modeling large-scale land surface processes. J. Geophys. Res., 107, 4118, doi:10.1029/2001JD000634.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Dolman A. , and Sato N. , 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80, 851878, doi:10.1175/1520-0477(1999)080<0851:TPPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • D’Orgeval, T., Polcher J. , and de Rosnay P. , 2008: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol. Earth Syst. Sci., 12, 13871401, doi:10.5194/hess-12-1387-2008.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc.,95, 1063–1082, doi:10.1175/BAMS-D-12-00242.1.

  • Ducharne, A., Laval K. , and Polcher J. , 1998: Sensitivity of the hydrological cycle to the parametrization of soil hydrology in a GCM. Climate Dyn., 14, 307327, doi:10.1007/s003820050226.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Golaz C. , Leblois E. , Laval K. , Polcher J. , Ledoux E. , and de Marsily G. , 2003: Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM. J. Hydrol., 280, 207228, doi:10.1016/S0022-1694(03)00230-0.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N., Laval K. , and Perrier A. , 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric global circulation model. J. Climate, 6, 248273, doi:10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durand, F., Papa F. , Rahman A. , and Bala S. K. , 2011: Impact of Ganges–Brahmaputra interannual discharge variations on Bay of Bengal salinity and temperature during the 1992–99 period. J. Earth Syst. Sci., 120, 859872, doi:10.1007/s12040-011-0118-x.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Balsamo G. , Viterbo P. , Miranda P. M. A. , Beljaars A. , Schar C. , and Elder K. , 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M., Mitchell K. , Yin L. , Rogers P. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. , 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Espinoza Villar, J. C., and Coauthors, 2009: Spatiotemporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol., 29, 15741594, doi:10.1002/joc.1791.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , and Huntingford C. , 2004: Climate feedback from wetland methane emission. Geophys. Res. Lett., 31, L20503, doi:10.1029/2004GL020919.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., and Peters-Lidard C. , 2013: Estimating water discharge from large radar altimetry datasets. Hydrol. Earth Syst. Sci., 17, 923933, doi:10.5194/hess-17-923-2013.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Bonnet M.-P. , Rotunno Filho O. C. , Guyot J.-L. , Seyler F. , and Mansur W. J. , 2010: Hydrological modelling and water balance of the Negro River basin: Evaluation based on in situ and spatial altimetry data. J. Hydrol., 24, 32193236, doi:10.1002/hyp.7747.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., and Coauthors, 2011a: Calibration and validation of a hydrological model with in situ data, spatial altimetry and gravimetry (in Portuguese). Rev. Bras. Recur. Hidricos, 16, 2945.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Espinoza J. C. V. , Ronchail J. , and Rotunno Filho O. C. , 2011b: Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J. Hydrol., 404, 304322, doi:10.1016/j.jhydrol.2011.04.037.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , Yamazaki D. , Decharme B. , Papa F. , and Mognard N. , 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, doi:10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , Yamazaki D. , and Mognard N. , 2013: Automatic parameterization of a flow routing scheme driven by radar altimetry data: Evaluation in the Amazon basin. Water Resour. Res., 49, 614–629, doi:10.1002/wrcr.20077.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , and Peugeot C. , 2014: Evaluating LSM-based water budgets over a West African basin assisted with a river routing scheme. J. Hydrometeor., doi:10.1175/JHM-D-14-0012.1, in press.

    • Search Google Scholar
    • Export Citation
  • Green, W. H., and Ampt G. , 1911: Studies on soil physics: 1. The flow of air and water through soils. J. Agric. Sci.,4 (1), 1–24, doi:10.1017/S0021859600001441.

  • Guimberteau, M., and Coauthors, 2012: Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol. Earth Syst. Sci., 16, 911935, doi:10.5194/hess-16-911-2012.

    • Search Google Scholar
    • Export Citation
  • Guimberteau, M., Ciais P. , Ducharne A. , Boisier J. P. , Peng S. , De Weirdt M. , and Verbeeck H. , 2014: Testing conceptual and physically based soil hydrology schemes against observations for the Amazon basin. Geosci. Model Dev., 7, 11151136, doi:10.5194/gmd-7-1115-2014.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , Hu Z.-Z. , Gao X. , and Zhao M. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Pitman A. J. , Love P. K. , Irannejad P. , and Chen T. , 1995: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489503, doi:10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, B273, 593610, doi:10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jung, M., Reichstein M. , and Bondeau A. , 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O., Townshend J. R. G. , Vermote E. F. , Masuoka E. , Wolfe R. E. , Saleous N. , Roy D. P. , and Morisette J. T. , 2002: An overview of MODIS Land data processing and product status. Remote Sens. Environ., 83, 315, doi:10.1016/S0034-4257(02)00084-6.

    • Search Google Scholar
    • Export Citation
  • Killeen, T. J., Douglas M. , Consiglio T. , Jørgensen P. M. , and Mejia J. , 2007: Dry spots and wet spots in the Andean hotspot. J. Biogeogr., 34, 13571373, doi:10.1111/j.1365-2699.2006.01682.x.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and Swenson S. C. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Li, H., Huang M. , Wigsmota M. S. , Ke Y. , Coleman A. M. , Leung L. R. , Wang A. , and Ricciuto D. M. , 2011: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.

    • Search Google Scholar
    • Export Citation
  • Li, H., Wigsmota M. S. , Wu H. , Huang M. , Ke Y. , Coleman A. M. , and Leung L. R. , 2013: A physically based runoff routing model for land surface and Earth system models. J. Hydrometeor., 14, 808828, doi:10.1175/JHM-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., Pegoraro E. , Nobre A. D. , Pereira M. G. P. , Grace J. , Culf A. D. , and Clement R. , 2002: Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res., 107, 8061, doi:10.1029/2001JD000623.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and ocean circulation: I. Atmospheric circulation and hydrology of Earth’s surface. Mon. Wea. Rev., 97, 739774, doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2005: Characteristics and spatio-temporal variability of the Amazon River basin water budget. Climate Dyn., 24, 1122, doi:10.1007/s00382-004-0461-6.

    • Search Google Scholar
    • Export Citation
  • Masutomi, Y., Inui Y. , Takahashi K. , and Matsuoka U. , 2009: Development of highly accurate global polygonal drainage basin data. Hydrol. Processes, 23, 572584, doi:10.1002/hyp.7186.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012a: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, doi:10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012b: The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res., 117, D15114, doi:10.1029/2012JD017540.

    • Search Google Scholar
    • Export Citation
  • Mouffe, M., Getirana A. C. V. , Ricci S. , Lion C. , Biancamaria S. , Mognard N. , Boone A. , and Rogel P. , 2012: Towards SWOT data assimilation for hydrology: Automatic calibration of global flow routing model parameters in the Amazon basin. SimHydro 2012: Hydraulic Modeling and Uncertainty, Nice, France, SHF/UNS/AIHR/AFM, 8 pp.

  • Mu, Q., Zhao M. , and Running S. W. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ.,115, 1781–1800, doi:10.1016/j.rse.2011.02.019.

  • Mualem, Y., 1976: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513522, doi:10.1029/WR012i003p00513.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res.,112, D07103, doi:10.1029/2006JD007522.

  • Noilhan, J., and Mahfouf J. F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Sud Y. C. , 1998: Design of total runoff integrating pathways (TRIP)—A global river channel network. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan,77, 235255.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp., doi:10.5065/D6N877R0.

  • Paiva, R. C. D., Collischonn W. , Bonnet M.-P. , Buarque D. C. , Frappart F. , Calmant S. , and Mendes C. A. B. , 2013a: Large-scale hydrological and hydrodynamic modelling of the Amazon River basin. Water Resour. Res., 49, 1226–1243, doi:10.1002/wrcr.20067.

    • Search Google Scholar
    • Export Citation
  • Paiva, R. C. D., Collischonn W. , and Buarque D. C. , 2013b: Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol. Processes, 27, 333346, doi:10.1002/hyp.8425.

    • Search Google Scholar
    • Export Citation
  • Paz, A. R., Collischonn W. , Tucci C. E. M. , and Padovani C. R. , 2011: Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol. Processes, 25, 14981516, doi:10.1002/hyp.7926.

    • Search Google Scholar
    • Export Citation
  • Ribeiro Neto, A., Collischonn W. , Vieira da Silva R. , and Tucci C. E. M. , 2005: Hydrological modelling in Amazonia—Use of the MGB-IPH model and alternative database. IAHS Publ.,303, 246–254.

  • Richey, J. E., Meade R. H. , Salati E. , Devol A. H. , Nordin C. F. , and Santos U. , 1986: Water discharge and suspended sediment concentrations in the Amazon River: 1982–1984. Water Resour. Res., 22, 756764, doi:10.1029/WR022i005p00756.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc.,85, 381–394, doi:10.1175/BAMS-85-3-381.

  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155, doi:10.1175/JHM414.1.

    • Search Google Scholar
    • Export Citation
  • Rowlands, D. D., Luthcke S. B. , Klosko S. M. , Lemoine F. G. R. , Chinn D. S. , McCarthy J. J. , Cox C. M. , and Anderson O. B. , 2005: Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, doi:10.1029/2004GL021908.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1988: Evaporation from Amazonian forest. Proc. Roy. Soc. London, 233B, 321346, doi:10.1098/rspb.1988.0024.

  • Swenson, S., Wahr J. , and Milly P. , 2003: Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 39, 1223, doi:10.1029/2002WR001808.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., Yeh P. J.-F. , Wahr J. , and Famiglietti J. S. , 2006: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett., 33, L16401, doi:10.1029/2006GL026962.

    • Search Google Scholar
    • Export Citation
  • Tomasella, J., Hodnett M. G. , Cuartas L. A. , Nobre A. D. , Oliveira M. J. , and Waterloo S. M. , 2008: The water balance of an Amazonian micro-catchment: The effect of interannual variability of rainfall on hydrological behaviour. Hydrol. Processes,22, 2133–2147, doi:10.1002/hyp.6813.

  • van den Hurk, B., and Viterbo P. , 2003: The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Global Planet. Change, 38, 165173, doi:10.1016/S0921-8181(03)00027-4.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo. 295, 42 pp.

  • van den Hurk, B., Best M. , Dirmeyer P. , Pitman A. , Polcher J. , and Santanello J. , 2011: Acceleration of land surface model development over a decade of GLASS. Bull. Amer. Meteor. Soc., 92, 1593–1600, doi:10.1175/BAMS-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898, doi:10.2136/sssaj1980.03615995004400050002x.

    • Search Google Scholar
    • Export Citation
  • Vertenstein, M., Craig T. , Middleton A. , Feddema D. , and Fisher C. , 2012: CESM1.0.4 user’s guide. UCAR Doc., 146 pp. [Available online at www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/ug.pdf.]

  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land-surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748, doi:10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., Wood A. W. , and Lettenmaier D. P. , 2008: Evaluation of precipitation products for global hydrological prediction. J. Hydrometeor., 9, 388407, doi:10.1175/2007JHM938.1.

    • Search Google Scholar
    • Export Citation
  • Vorosmarty, C. J., Moore B. III, Grace A. L. , and Gildea M. P. , 1989: Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles, 3, 241265, doi:10.1029/GB003i003p00241.

    • Search Google Scholar
    • Export Citation
  • Wilk, J., Kniveton D. , Andersson L. , Layberry R. , Todd M. C. , Hughes D. , Ringrose S. , and Vanderpost C. , 2006: Estimating rainfall and water balance over the Okavango River basin for hydrological applications. J. Hydrol., 331, 1829, doi:10.1016/j.jhydrol.2006.04.049.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2c Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19, 115135, doi:10.1016/S0921-8181(98)00044-7.

    • Search Google Scholar
    • Export Citation
  • Xavier, L. N. R., Araujo A. A. M. , and Rotunno Filho O. C. , 2005: Bayesian Kriging and GLUE applied to estimation of uncertainty due to precipitation representation in hydrological modelling. IAHS Publ., 303, 9098.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sellers P. J. , Kinter J. L. III, and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., Oki T. , and Kanae S. , 2009: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci., 13, 22412251, doi:10.5194/hess-13-2241-2009.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., Kanae S. , Kim H. , and Oki T. , 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res.,47, W04501, doi:10.1029/2010WR009726.

  • Yilmaz, K. K., Hogue T. S. , Hsu K.-L. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517, doi:10.1175/JHM431.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, X., Xue Y. , and Collatz G. J. , 2003: An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecol. Modell., 162, 97117, doi:10.1016/S0304-3800(02)00405-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2046 588 24
PDF Downloads 965 162 11