Physically Based Mountain Hydrological Modeling Using Reanalysis Data in Patagonia

Sebastian A. Krogh Department of Civil Engineering, Universidad de Chile, Santiago, Chile

Search for other papers by Sebastian A. Krogh in
Current site
Google Scholar
PubMed
Close
,
John W. Pomeroy Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by John W. Pomeroy in
Current site
Google Scholar
PubMed
Close
, and
James McPhee Department of Civil Engineering, and Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile

Search for other papers by James McPhee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A physically based hydrological model for the upper Baker River basin (UBRB) in Patagonia was developed using the modular Cold Regions Hydrological Model (CRHM) in order to better understand the processes that drive the hydrological response of one of the largest rivers in this region. The model includes a full suite of blowing snow, intercepted snow, and energy balance snowmelt modules that can be used to describe the hydrology of this cold region. Within this watershed, snowfall, wind speed, and radiation are not measured; there are no high-elevation weather stations; and existing weather stations are sparsely distributed. The impact of atmospheric data from ECMWF interim reanalysis (ERA-Interim) and Climate Forecast System Reanalysis (CFSR) on improving model performance by enhancing the representation of forcing variables was evaluated. CRHM parameters were assigned for local physiographic and vegetation characteristics based on satellite land cover classification, a digital elevation model, and parameter transfer from cold region environments in western Canada. It was found that observed precipitation has almost no predictive power [Nash–Sutcliffe coefficient (NS) < 0.3] when used to force the hydrologic model, whereas model performance using any of the reanalysis products—after bias correction—was acceptable with very little calibration (NS > 0.7). The modeled water balance shows that snowfall amounts to about 28% of the total precipitation and that 26% of total river flow stems from snowmelt. Evapotranspiration losses account for 7.2% of total precipitation, whereas sublimation and canopy interception losses represent about 1%. The soil component is the dominant modulator of runoff, with infiltration contributing as much as 73.7% to total basin outflow.

Corresponding author address: James McPhee, Department of Civil Engineering, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile. E-mail: jmcphee@ing.uchile.cl

Abstract

A physically based hydrological model for the upper Baker River basin (UBRB) in Patagonia was developed using the modular Cold Regions Hydrological Model (CRHM) in order to better understand the processes that drive the hydrological response of one of the largest rivers in this region. The model includes a full suite of blowing snow, intercepted snow, and energy balance snowmelt modules that can be used to describe the hydrology of this cold region. Within this watershed, snowfall, wind speed, and radiation are not measured; there are no high-elevation weather stations; and existing weather stations are sparsely distributed. The impact of atmospheric data from ECMWF interim reanalysis (ERA-Interim) and Climate Forecast System Reanalysis (CFSR) on improving model performance by enhancing the representation of forcing variables was evaluated. CRHM parameters were assigned for local physiographic and vegetation characteristics based on satellite land cover classification, a digital elevation model, and parameter transfer from cold region environments in western Canada. It was found that observed precipitation has almost no predictive power [Nash–Sutcliffe coefficient (NS) < 0.3] when used to force the hydrologic model, whereas model performance using any of the reanalysis products—after bias correction—was acceptable with very little calibration (NS > 0.7). The modeled water balance shows that snowfall amounts to about 28% of the total precipitation and that 26% of total river flow stems from snowmelt. Evapotranspiration losses account for 7.2% of total precipitation, whereas sublimation and canopy interception losses represent about 1%. The soil component is the dominant modulator of runoff, with infiltration contributing as much as 73.7% to total basin outflow.

Corresponding author address: James McPhee, Department of Civil Engineering, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile. E-mail: jmcphee@ing.uchile.cl
Save
  • Annandale, J. G., Jovanovic N. Z. , Benadé N. , and Allen R. G. , 2001: Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig. Sci., 21, 5767, doi:10.1007/s002710100047.

    • Search Google Scholar
    • Export Citation
  • Aravena, J. C., 2007: Reconstructing climate variability using tree rings and glaciers fluctuations in southern Chilean Andes. Ph.D. thesis, Graduate Program in Geography, University of Western Ontario, 220 pp.

  • Armstrong, R. N., 2011: Spatial variability of actual evapotranspiration in a prairie landscape. Ph.D. thesis, Dept. of Geography and Planning, University of Saskatchewan, 194 pp.

  • Arnold, J. G., Allen P. M. , Volk M. , Williams J. R. , and Bosch D. D. , 2010: Assessment of different representations of spatial variability on SWAT model performance. Trans. ASABE, 53, 14331443.

    • Search Google Scholar
    • Export Citation
  • Ayers, H. D., 1959: Influence of soil profile and vegetation characteristics on net rainfall supply to runoff. Spillway Design Floods: Proceedings of Hydrology Symposium No. 1, National Research Council of Canada, 198205. [Available online at www.usask.ca/hydrology/papers/Ayers_1959.pdf.]

  • Barnes, H. H., 1967: Roughness characteristics of natural channels. USGS Water Supply Paper 1849, 213 pp. [Available online at http://pubs.usgs.gov/wsp/wsp_1849/.]

  • Barría, P. L., 2010: Pronóstico de Caudales Medios Mensuales en las Cuencas de los Ríos Baker y Pascua. Civil engineering thesis, Civil Engineering Dept., University of Chile, 167 pp.

  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 58, 389420, doi:10.1002/qj.49705824704.

  • Casanova, M., Salazar O. , Seguel O. , and Luzio W. , 2013: The Soils of Chile. Springer, 185 pp.

  • Chow, V. T., 1964: Handbook of Applied Hydrology. McGraw-Hill, 1468 pp.

  • CONAF/CONAMA, 1999: Catastro y evaluación de los recursos vegetacionales nativos de Chile. Project Rep., 89 pp. [Available online at www.bcn.cl/carpeta_temas_profundidad/ley-bosque-nativo/archivos-pdf/Catastro.pdf.]

  • DeBeer, C. M., and Pomeroy J. W. , 2010: Simulation of the snowmelt runoff contributing area in a small alpine basin. Hydrol. Earth Syst. Sci., 14, 12051219, doi:10.5194/hess-14-1205-2010.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dirección General de Aguas, 1987: Balance hidrológico nacional. Tech. Rep. 70115, Dirección General de Aguas, 62 pp. [Available online at http://documentos.dga.cl/SUP1540.pdf.]

  • Dornes, P. F., Bryan A. T. , Davison B. , Pietroniro A. , Pomeroy J. W. , and Marsh P. , 2008: Regionalization of land surface hydrological model parameters in subarctic environments. Phys. Chem. Earth, 33, 10811089, doi:10.1016/j.pce.2008.07.007.

    • Search Google Scholar
    • Export Citation
  • Dussaillant, J. A., Buytaert W. , Meier C. , and Espinoza F. , 2012: Hydrological regime of remote catchments with extreme gradients under accelerated change: The Baker basin in Patagonia. Hydrol. Sci. J., 57, 15301542, doi:10.1080/02626667.2012.726993.

    • Search Google Scholar
    • Export Citation
  • Ellis, C. R., Pomeroy J. W. , Brown T. , and MacDonald J. , 2010: Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol. Earth Syst. Sci., 14, 925940, doi:10.5194/hess-14-925-2010.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Pomeroy J. W. , 2007: Snowmelt runoff sensitivity analysis to drought on the Canadian prairies. Hydrol. Processes, 21, 25942609, doi:10.1002/hyp.6796.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Pomeroy J. W. , 2009: Modelling blowing snow redistribution to prairie wetlands. Hydrol. Processes, 23, 25572569, doi:10.1002/hyp.7348.

    • Search Google Scholar
    • Export Citation
  • Fang, X., Pomeroy J. W. , Westbrook C. J. , Guo X. , Minke A. G. , and Brown T. , 2010: Prediction of snowmelt derived streamflow in a wetland dominated prairie basin. Hydrol. Earth Syst. Sci., 14, 9911006, doi:10.5194/hess-14-991-2010.

    • Search Google Scholar
    • Export Citation
  • Fang, X., Pomeroy J. W. , Ellis C. R. , MacDonald M. K. , DeBeer C. M. , and Brown T. , 2013: Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains. Hydrol. Earth Syst. Sci., 17, 16351659, doi:10.5194/hess-17-1635-2013.

    • Search Google Scholar
    • Export Citation
  • Garnier, B. J., and Ohmura A. , 1970: The evaluation of surface variations in solar radiation income. Sol. Energy, 13, 2134, doi:10.1016/0038-092X(70)90004-6.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., Vuille M. , Compagnucci R. , and Marengo J. , 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, doi:10.1016/j.palaeo.2007.10.032.

    • Search Google Scholar
    • Export Citation
  • Gelfan, A. N., Pomeroy J. W. , and Kuchment L. S. , 2004: Modeling forest cover influences on snow accumulation, sublimation and melt. J. Hydrometeor., 5, 785803, doi:10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gonthier, C., 2011: Influencia de la escala espacial y representación hidrológica de una Cuenca de montaña sobre la capacidad predictiva de un modelo hidrológico. M.S. thesis, Civil Engineering Dept., University of Chile, 165 pp.

  • Granger, R. J., and Gray D. M. , 1989: Evaporation from natural non-saturated surfaces. J. Hydrol., 111, 2129, doi:10.1016/0022-1694(89)90249-7.

    • Search Google Scholar
    • Export Citation
  • Granger, R. J., and Pomeroy J. W. , 1997: Sustainability of the western Canadian boreal forest under changing hydrological conditions. II. Summer energy and water use. IAHS Publ.,240, 243–249. [Available online at http://iahs.info/uploads/dms/iahs_240_0243.pdf.]

  • Gray, D. M., and Landine P. G. , 1987: Albedo model for shallow prairie snow covers. Can. J. Earth Sci., 24, 17601768, doi:10.1139/e87-168.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., and Landine P. G. , 1988: An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci., 25, 12921303, doi:10.1139/e88-124.

    • Search Google Scholar
    • Export Citation
  • Harder, P., and Pomeroy J. , 2013: Estimating precipitation phase using a phycrometric energy balance method. Hydrol. Processes, 27, 19011914, doi:10.1002/hyp.9799.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., Sirguey P. , Arnaud Y. , Pouyaud B. , and Chevalier P. , 2008: Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Global Planet. Change, 61, 103116, doi:10.1016/j.gloplacha.2007.07.005.

    • Search Google Scholar
    • Export Citation
  • MacDonald, M., Pomeroy J. , and Pietroniro A. , 2009: Parameterizing redistribution and sublimation of blowing snow for hydrological models: Test in a mountainous subartic catchment. Hydrol. Processes, 23, 25702583, doi:10.1002/hyp.7356.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., Sharp M. , Burgess D. , and Anslow F. , 2007: Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. Int. J. Climatol., 27, 385398, doi:10.1002/joc.1396.

    • Search Google Scholar
    • Export Citation
  • Martin, F. R., 2002: Gross evaporation for the 30-year period 1971–2000 in the Canadian Prairies. Hydrology Rep. 143, Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration Technical Service, 35 pp.

  • NASA, cited 2014: ASTER Global Digital Elevation Model. [Available online at http://gdem.ersdac.jspacesystems.or.jp/.]

  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., Grenfell T. C. , Light B. , and Hobbs P. V. , 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107, 8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and Li L. , 2000: Prairie and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105, 26 61926 634, doi:10.1029/2000JD900149.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Granger R. J. , Pietroniro A. , Elliott J. E. , Toth B. , and Hedstrom N. , 1997: Hydrological pathways in the Prince Albert Model Forest. Final Rep. to Prince Albert Model Forest Association, 220 pp. [Available online at www.pamodelforest.sk.ca/pubs/PAMF3400.pdf.]

  • Pomeroy, J. W., Gray D. M. , Brown T. , Hedstrom N. R. , Quinton W. L. , Granger R. J. , and Carey S. K. , 2007: The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol. Processes, 21, 26502667, doi:10.1002/hyp.6787.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Fang X. , and Ellis C. , 2012: Sensitivity of snowmelt hydrology in Marmot Creek, Alberta, to forest cover disturbance. Hydrol. Processes, 26, 18911904, doi:10.1002/hyp.9248.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., Whitfield P. H. , and Spence C. , Eds., 2013: Putting Prediction in Ungauged Basins into Practice. IAHS, 362 pp.

  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quinton, W. L., Shirazi T. , Carey S. K. , and Pomeroy J. W. , 2005: Soil water storage and active-layer development in a sub-alpine tundra hillslope, southern Yukon Territory, Canada. Permafrost Periglacial Processes, 16, 369382, doi:10.1002/ppp.543.

    • Search Google Scholar
    • Export Citation
  • Rigon, R., Rodriguez-Iturbe I. , and Maritan A. , 1996: On Hack’s law. Water Resour. Res., 32, 33673374, doi:10.1029/96WR02397.

  • Rivera, A., Benham T. , Casassa G. , Mabmer J. , and Dowdeswell J. , 2007: Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global Planet. Change, 59, 126137, doi:10.1016/j.gloplacha.2006.11.037.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Ziegler A. , and Wood E. , 2004: Correction of the high-latitude rain day anomaly in the NCEP–NCAR reanalysis for land surface hydrological modeling. J. Climate, 17, 38143828, doi:10.1175/1520-0442(2004)017<3814:COTHRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., Pomeroy J. W. , Essery R. L. , and Bewley D. , 2006: Incoming longwave radiation to melting snow: Observations, sensitivity and estimations in northern environments. Hydrol. Processes, 20, 36973708, doi:10.1002/hyp.6383.

    • Search Google Scholar
    • Export Citation
  • Silva, V., Kousky V. , and Higgins R. , 2011: Daily precipitation statistics for South America: An intercomparison between NCEP reanalyses and observations. J. Hydrometeor., 12, 101117, doi:10.1175/2010JHM1303.1.

    • Search Google Scholar
    • Export Citation
  • Ward, E., Buytaert W. , Peaver L. , and Wheather H. , 2011: Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour., 34, 12221231, doi:10.1016/j.advwatres.2011.05.007.

    • Search Google Scholar
    • Export Citation
  • Warren, R., and Sugden D. , 1993: The Patagonia Icefield: A glaciological review. Arct. Alp. Res., 25, 316331, doi:10.2307/1551915.

  • WMO, 1994: Guide to hydrological practices. 5th ed. WMO Publ. 164, 735 pp.

  • Zhou, J., Pomeroy J. W. , Zhang W. , Cheng G. , Wang G. , and Chen C. , 2014: Simulating cold regions hydrological processes using a modular model in the west of China. J. Hydrol., 509, 1324, doi:10.1016/j.jhydrol.2013.11.013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1293 359 11
PDF Downloads 862 185 9