A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America

Pablo C. Spennemann Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos Aires, UMI–Instituto Franco–Argentino sobre Estudios de Clima y sus Impactos/CNRS, Buenos Aires, Argentina

Search for other papers by Pablo C. Spennemann in
Current site
Google Scholar
PubMed
Close
,
Juan A. Rivera Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (CCT-Mendoza/CONICET), Parque General San Martín, Mendoza, Argentina

Search for other papers by Juan A. Rivera in
Current site
Google Scholar
PubMed
Close
,
A. Celeste Saulo Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos Aires, UMI–Instituto Franco–Argentino sobre Estudios de Clima y sus Impactos/CNRS, Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Servicio Meteorológico Nacional, Buenos Aires, Argentina

Search for other papers by A. Celeste Saulo in
Current site
Google Scholar
PubMed
Close
, and
Olga C. Penalba Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina

Search for other papers by Olga C. Penalba in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study aims to compare simulated soil moisture anomalies derived from different versions of the Global Land Data Assimilation System (GLDAS), the standardized precipitation index (SPI), and a new multisatellite surface soil moisture product over southern South America. The main motivation is the need for assessing the reliability of GLDAS variables to be used in the characterization of soil state and its variability at the regional scale. The focus is on the southeastern part of South America (SESA), which is part of the La Plata basin, one of the largest basins of the world, where agriculture is the main source of income. The results show that GLDAS data capture soil moisture anomalies and their variability, taking into account regional and seasonal dependencies and showing correspondence with other proxies used to characterize soil states. Over large portions of the domain, and particularly over SESA, the correlation with the SPI is very high, with the second version of GLDAS, version 2 (GLDAS-2 v2), exhibiting the highest values regardless of the season. Similar results were obtained by comparing the surface soil moisture anomalies from the GLDAS land surface model (LSM) against the satellite estimations for a shorter period of time. This work documents that the precipitation dataset used to force each LSM and the choice of the LSM are of major relevance for representing soil conditions in an adequate manner. The results are considered to support the use of GLDAS as an indicator of soil moisture states and for developing new soil moisture–monitoring indices that can be applied, for example, in the context of agricultural production management.

Corresponding author address: Pablo C. Spennemann, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina. E-mail: pspennemann@cima.fcen.uba.ar

Abstract

This study aims to compare simulated soil moisture anomalies derived from different versions of the Global Land Data Assimilation System (GLDAS), the standardized precipitation index (SPI), and a new multisatellite surface soil moisture product over southern South America. The main motivation is the need for assessing the reliability of GLDAS variables to be used in the characterization of soil state and its variability at the regional scale. The focus is on the southeastern part of South America (SESA), which is part of the La Plata basin, one of the largest basins of the world, where agriculture is the main source of income. The results show that GLDAS data capture soil moisture anomalies and their variability, taking into account regional and seasonal dependencies and showing correspondence with other proxies used to characterize soil states. Over large portions of the domain, and particularly over SESA, the correlation with the SPI is very high, with the second version of GLDAS, version 2 (GLDAS-2 v2), exhibiting the highest values regardless of the season. Similar results were obtained by comparing the surface soil moisture anomalies from the GLDAS land surface model (LSM) against the satellite estimations for a shorter period of time. This work documents that the precipitation dataset used to force each LSM and the choice of the LSM are of major relevance for representing soil conditions in an adequate manner. The results are considered to support the use of GLDAS as an indicator of soil moisture states and for developing new soil moisture–monitoring indices that can be applied, for example, in the context of agricultural production management.

Corresponding author address: Pablo C. Spennemann, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina. E-mail: pspennemann@cima.fcen.uba.ar
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor.,4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

  • Albergel, C., and Coauthors, 2013: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeor., 14, 12591277, doi:10.1175/JHM-D-12-0161.1.

    • Search Google Scholar
    • Export Citation
  • Andrade, F. H., and Sadras V. O. , Eds., 2000: Bases para el Manejo del Maíz, el Girasol y la Soja. INTA, 450 pp.

  • Balsamo, G., and Coauthors, 2012: ERA-Interim/Land: A global land surface reanalysis based on ERA-Interim meteorological forcing. ERA Rep. 13, 25 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_13.pdf.]

  • Betts, A. K., 2009: Land-surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst.,1, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Oleson K. W. , Vertenstein M. , Levis S. , Zeng X. , Dai Y. , Dickinson R. E. , and Yang Z.-L. , 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Tan L. , 2001: A multi-decadal global land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, 43 pp. [Available online at www.iges.org/pubs/ctr_102.pdf.]

  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., de Jeu R. , Chung D. , Parinussa R. , Liu Y. , Wagner W. , and Fernández-Prieto D. , 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite soil moisture data. Geophys. Res. Lett., 39, L18405, doi:10.1029/2012GL052988.

    • Search Google Scholar
    • Export Citation
  • Hayes, M., Svoboda M. , Wall N. , and Widhalm M. , 2011: The Lincoln Declaration on Drought Indices: Universal meteorological drought index recommended. Bull. Amer. Meteor. Soc., 92, 485488, doi:10.1175/2010BAMS3103.1.

    • Search Google Scholar
    • Export Citation
  • Houborg, R., Rodell M. , Li B. , Reichle R. , and Zaitchik B. , 2012: Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Resour. Res., 48, W07525, doi:10.1029/2011WR011291.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Van den Dool H. M. , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, doi:10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, L., and Peters A. J. , 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87, 8598, doi:10.1016/S0034-4257(03)00174-3.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Cheng-Hsuan C.-H. , Schemm J. , and Ebisuzaki W. , 2003: The predictability of soil moisture and near-surface temperature in hindcasts of the NCEP seasonal forecast model. J. Climate, 16, 510521, doi:10.1175/1520-0442(2003)016<0510:TPOSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, H., Rodell M. , Beyrich F. , Cleugh H. , van Gorsel E. , Liu H. , and Meyers T. P. , 2007: Sensitivity of land surface simulations to model physics, parameters, and forcings, at four CEOP sites. J. Meteor. Soc. Japan, 85A, 187204, doi:10.2151/jmsj.85A.187.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Krepper, C. M., and Zucarelli G. V. , 2010: Climatology of water excess and shortages in the La Plata basin. Theor. Appl. Climatol., 102, 1327, doi:10.1007/s00704-009-0234-6.

    • Search Google Scholar
    • Export Citation
  • Li, H., Robock A. , Liu S. , Mo X. , and Viterbo P. , 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180193, doi:10.1175/JHM416.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer Variable Infiltration Capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., Dorigo W. A. , Parinussa R. M. , de Jeu R. A. M. , Wagner W. , McCabe M. F. , Evans J. P. , and van Dijk A. I. J. M. , 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, doi:10.1016/j.rse.2012.03.014.

    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., and Saunders M. A. , 2002: A drought climatology for Europe. Int. J. Climatol., 22, 15711592, doi:10.1002/joc.846.

  • McKee, T. B., Doesken N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Preprints, 8th Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mo, K. C., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, doi:10.1175/2008JHM1002.1.

  • Mueller, B., and Seneviratne S. I. , 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Penalba, O. C., and Rivera J. A. , 2013: Future changes in drought characteristics over southern South America projected by a CMIP5 ensemble. Amer. J. Climate Change, 2, 173182, doi:10.4236/ajcc.2013.23017.

    • Search Google Scholar
    • Export Citation
  • Penalba, O. C., Rivera J. A. , and Pántano V. C. , 2014: The CLARIS LPB database: Constructing a long-term daily hydro-meteorological dataset for La Plata basin, southern South America. Geosci. Data J., 1, 2029, doi:10.1002/gdj3.7.

    • Search Google Scholar
    • Export Citation
  • Pozzi, W., and Coauthors, 2013: Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Amer. Meteor. Soc., 94, 776785, doi:10.1175/BAMS-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., Hoerling M. P. , Lyon B. , Kumar A. , Bell M. A. , Tippett M. K. , and Wang H. , 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Mu M. , Vinnikov K. , Trofimova I. V. , and Adamenko T. I. , 2005: Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet). Geophys. Res. Lett., 32, L03401, doi:10.1029/2004GL021914.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and Beaudoing H. , 2014: README document for the Global Land Data Assimilation System version 2 (GLDAS-2) products. NASA Goddard Earth Sciences Data and Information Services Center Rep., 22 pp. [Available online at ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf.]

  • Schneider, U., Becker A. , Finger P. , Meyer-Christoffer A. , Rudolf B. , and Ziese M. , 2011: GPCC Full Data Reanalysis version 6.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC, Offenbach, Germany, doi:10.5676/DWD_GPCC/FD_M_V6_100.

  • Seiler, R. A., Hayes M. , and Bressan L. , 2002: Using the standardized precipitation index for flood risk monitoring. Int. J. Climatol., 22, 13651376, doi:10.1002/joc.799.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate,19, 3088–3111, doi:10.1175/JCLI3790.1.

  • Sims, A. P., Niyogi D. S. , and Raman S. , 2002: Adopting drought indices for estimating soil moisture: A North Carolina case study. Geophys. Res. Lett.,29, 1183, doi:10.1029/2001GL013343.

  • Szalai, S., Szinell C. , and Zoboki J. , 2000: Drought monitoring in Hungary. Early warning systems for drought preparedness and drought management, WMO/TD 1037, 182–199.

  • Tucker, C., and Sellers P. , 1986: Satellite remote sensing of primary production. Int. J. Remote Sens., 7, 13951416, doi:10.1080/01431168608948944.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Dorigo W. , de Jeu R. , Fernandez D. , Benveniste J. , Haas E. , and Ertl M. , 2012: Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-7, ISPRS, 315–321.

  • WMO, 2012: Standardized precipitation index user guide. WMO 1090, 24 pp. [Available online at www.wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf.]

  • Xia, Y., Sheffield J. , Ek M. B. , Dong J. , Chaney N. , Wei H. , Meng J. , and Wood E. F. , 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, doi:10.1016/j.jhydrol.2014.02.027.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B., Rodell M. , and Olivera F. , 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, W06507, doi:10.1029/2009WR007811.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1582 305 15
PDF Downloads 1120 197 9