Evaluating the Performance of Hydrological Models via Cross-Spectral Analysis: Case Study of the Thames Basin, United Kingdom

Graham P. Weedon Met Office, Joint Centre for Hydro-Meteorological Research, Wallingford, United Kingdom

Search for other papers by Graham P. Weedon in
Current site
Google Scholar
PubMed
Close
,
Christel Prudhomme Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Christel Prudhomme in
Current site
Google Scholar
PubMed
Close
,
Sue Crooks Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Sue Crooks in
Current site
Google Scholar
PubMed
Close
,
Richard J. Ellis Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Richard J. Ellis in
Current site
Google Scholar
PubMed
Close
,
Sonja S. Folwell Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Sonja S. Folwell in
Current site
Google Scholar
PubMed
Close
, and
Martin J. Best Met Office, Exeter, United Kingdom

Search for other papers by Martin J. Best in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical for modeling mean discharge, multiple physical processes at many time scales influence the variability and timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical manipulation of precipitation confirms that modeled transformation involves runoff generation and routing that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge variability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge (prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-frequency variability (three models), 3) excessive short-term variability in winter half years but too little variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals how reruns of one model using alternative methods of runoff generation—designed to improve performance at the weekly to monthly time scales—degraded performance at the annual scale. The cross-spectral approach facilitates hydrological model diagnoses and development.

Corresponding author address: Graham Weedon, Met Office, Joint Centre for Hydro-Meteorological Research, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom. E-mail: graham.weedon@metoffice.gov.uk

Abstract

Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical for modeling mean discharge, multiple physical processes at many time scales influence the variability and timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical manipulation of precipitation confirms that modeled transformation involves runoff generation and routing that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge variability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge (prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-frequency variability (three models), 3) excessive short-term variability in winter half years but too little variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals how reruns of one model using alternative methods of runoff generation—designed to improve performance at the weekly to monthly time scales—degraded performance at the annual scale. The cross-spectral approach facilitates hydrological model diagnoses and development.

Corresponding author address: Graham Weedon, Met Office, Joint Centre for Hydro-Meteorological Research, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom. E-mail: graham.weedon@metoffice.gov.uk
Save
  • Abdi, H., 2007: The Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of Measurement and Statistics, N. Salkind, Ed., Sage, 103–107.

  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES) model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., Kirkby M. J. , Schofield N. , and Tagg A. F. , 1984: Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. J. Hydrol., 69, 119143, doi:10.1016/0022-1694(84)90159-8.

    • Search Google Scholar
    • Export Citation
  • Billings, S. A., 2013: Nonlinear System Identification: NARMAX methods in the Time, Frequency, and Spatio–Temporal Domains. Wiley, 555 pp.

  • Bryce, R. M., and Sprague K. B. , 2012: Revisiting detrended fluctuation analysis. Sci. Rep., 2, 315, doi:10.1038/srep00315.

  • Clark, D. B., and Gedney N. , 2008: Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model. J. Geophys. Res., 113, D10111, doi:10.1029/2007JD008940.

    • Search Google Scholar
    • Export Citation
  • Crooks, S. M., and Naden P. S. , 2007: CLASSIC: A semi-distributed rainfall–runoff modelling system. Hydrol. Earth Syst. Sci., 11, 516531, doi:10.5194/hess-11-516-2007.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and Lehner B. , 2002: Validation of a new global 30-min drainage direction map. J. Hydrol., 258, 214231, doi:10.1016/S0022-1694(01)00565-0.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when data are serially correlated. J. Climate, 10, 21472153, doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fleming, S. W., 2014: A non-uniqueness problem in the identification of power-law spectral scaling for hydroclimatic time series. Hydrol. Sci. J., 59, 73–84, doi:10.1080/02626667.2013.851384.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., and Cox P. M. , 2003: The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity. J. Hydrometeor., 4, 12651275, doi:10.1175/1525-7541(2003)004<1265:TSOGCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., Taylor K. E. , and Doutriaux C. , 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., and Coauthors, 2012a: Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe. J. Hydrometeor., 13, 604620, doi:10.1175/JHM-D-11-083.1.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Wagner T. , Tallaksen L. M. , and Engeland K. , 2012b: Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resour. Res., 48, W11504, doi:10.1029/2011WR010911.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, doi:10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • Heneghan, C., and McDarby G. , 2000: Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E, 62, 61036110.

    • Search Google Scholar
    • Export Citation
  • Herman, J. D., Reed P. M. , and Wagener T. , 2013: Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resour. Res., 49, 14001414, doi:10.1002/wrcr.20124.

    • Search Google Scholar
    • Export Citation
  • Hoskins, J. R. M., 1984: Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res., 20, 18981908, doi:10.1029/WR020i012p01898.

    • Search Google Scholar
    • Export Citation
  • Hurst, H. E., 1951: Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civ. Eng., 116, 770808.

  • Ifeachor, E. C., and Jervis B. W. , 1993: Digital Signal Processing: A Practical Approach. Addison-Wesley, 760 pp.

  • Jenkins, G. M., and Watts D. G. , 1969: Spectral Analysis and Its Applications. Holden Day, 525 pp.

  • Jones, S. B., 1983: The estimation of catchment average point rainfall profiles. IH Rep. 87, Institute of Hydrology, Wallingford, United Kingdom, 34 pp. [Available online at www.ceh.ac.uk/products/publications/documents/ihreportno87lo-res.pdf.]

  • Kantelhardt, J. W., Koscielny-Bunde E. , Ryski D. , Braun P. , Bunde A. , and Havlin S. , 2006: Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res., 111, D01106, doi:10.1029/2005JD005881.

    • Search Google Scholar
    • Export Citation
  • Labat, D., 2010: Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol., 385, 269278, doi:10.1016/j.jhydrol.2010.02.029.

    • Search Google Scholar
    • Export Citation
  • Labat, D., Ababou R. , and Mangin A. , 2000a: Rainfall–runoff relations for karstic springs. Part I: Convolution and spectral analysis. J. Hydrol., 238, 123148, doi:10.1016/S0022-1694(00)00321-8.

    • Search Google Scholar
    • Export Citation
  • Labat, D., Ababou R. , and Mangin A. , 2000b: Rainfall–runoff relations for karstic springs. Part II: Continuous wavelet transform and multiresolution analyses. J. Hydrol., 238, 149178, doi:10.1016/S0022-1694(00)00322-X.

    • Search Google Scholar
    • Export Citation
  • Lane, S. N., 2007: Assessment of rainfall–runoff models based upon wavelet analysis. Hydrol. Processes, 21, 586607, doi:10.1002/hyp.6249.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Brown J. , Demargne J. , and Seo D.-J. , 2011: A wavelet-based approach to assessing timing errors in hydrologic predictions. J. Hydrol., 397, 210224, doi:10.1016/j.jhydrol.2010.11.040.

    • Search Google Scholar
    • Export Citation
  • Marsh, T. J., and Hannaford J. , 2008: UK Hydrometric Register. Hydrological Data UK Series, Centre for Ecology and Hydrology, 210 pp.

  • Materia, S., Dirmeyer P. A. , Guo Z. , Alessandri A. , and Navarra A. , 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334351, doi:10.1175/2009JHM1162.1.

    • Search Google Scholar
    • Export Citation
  • Mesa, O. J., and Poveda G. , 1993: The Hurst effect: The scale fluctuation approach. Water Resour. Res., 29, 39954002, doi:10.1029/93WR01686.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Wetherald R. T. , 2002: Macroscale water fluxes 3. Effects of land processes on variability of monthly river discharge. Water Resour. Res., 38, 1235, doi:10.1029/2001WR000761.

    • Search Google Scholar
    • Export Citation
  • Montanari, A., and Toth E. , 2007: Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resour. Res., 43, W05434, doi:10.1029/2006WR005184.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., and Clarke R. T. , 1981: A distribution function approach to rainfall runoff modelling. Water Resour. Res., 17, 13671382, doi:10.1029/WR017i005p01367.

    • Search Google Scholar
    • Export Citation
  • Moussu, F., Oudin L. , Plagnes V. , Mangin A. , and Bedjoudi H. , 2011: A multi-objective calibration framework for rainfall–discharge models applied to karst systems. J. Hydrol., 400, 364376, doi:10.1016/j.jhydrol.2011.01.047.

    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2007: Long memory of rivers from spatial aggregation. Water Resour. Res., 43, W01202, doi:10.1029/2006WR005721.

  • Naden, P. S., 1992: Spatial variability in flood estimation for large catchments: The exploitation of channel network structure. Hydrol. Sci. J., 37, 5371, doi:10.1080/02626669209492561.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Padilla, A., and Pulido-Bosch A. , 1995: Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J. Hydrol., 168, 7389, doi:10.1016/0022-1694(94)02648-U.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., and De Lannoy J. M. , 2011: Multivariate calibration of a water and energy balance model in the spectral domain. Water Resour. Res., 47, W07523, doi:10.1029/2010WR010292.

    • Search Google Scholar
    • Export Citation
  • Pelletier, J. D., and Turcotte D. L. , 1997: Long-range persistence in climatological and hydrological time series: Analysis, modelling and application to drought hazard assessment. J. Hydrol., 203, 198208, doi:10.1016/S0022-1694(97)00102-9.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and Walden A. T. , 1993: Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge University Press, 583 pp.

  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, 963 pp.

  • Priestley, M. B., 1981: Spectral Analysis and Time Series. Academic Press, 890 pp.

  • Quets, J. J., De Lannoy G. J. M. , and Pauwels V. R. N. , 2010: Comparison of spectral and time domain calibration methods for precipitation–discharge processes. Hydrol. Processes, 24, 10481062, doi:10.1002/hyp.7546.

    • Search Google Scholar
    • Export Citation
  • Schaefli, B., and Zehe E. , 2009: Hydrological model performance and parameter estimation in the wavelet-domain. Hydrol. Earth Syst. Sci., 13, 19211936, doi:10.5194/hess-13-1921-2009.

    • Search Google Scholar
    • Export Citation
  • Schepers, H. E., van Beek J. H. G. M. , and Bassingthwaighte J. B. , 1992: Four methods to estimate the fractal dimension of self-affine signals. IEEE Eng. Med. Biol. Mag., 11, 5764, doi:10.1109/51.139038.

    • Search Google Scholar
    • Export Citation
  • Smith, L. C., Turcotte D. L. , and Isacks B. L. , 1998: Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Processes, 12, 233249, doi:10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Weedon, G. P., 2003: Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles. Cambridge University Press, 259 pp.

  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, doi:10.1175/2011JHM1369.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30, 7982, doi:10.3354/cr030079.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 666 156 13
PDF Downloads 376 136 8