Scenarios of Future Snow Conditions in Styria (Austrian Alps)

Thomas Marke Institute of Geography, University of Innsbruck, Innsbruck, Austria

Search for other papers by Thomas Marke in
Current site
Google Scholar
PubMed
Close
,
Ulrich Strasser Institute of Geography, University of Innsbruck, Innsbruck, Austria

Search for other papers by Ulrich Strasser in
Current site
Google Scholar
PubMed
Close
,
Florian Hanzer Institute of Geography, University of Innsbruck, Innsbruck, Austria

Search for other papers by Florian Hanzer in
Current site
Google Scholar
PubMed
Close
,
Johann Stötter Institute of Geography, University of Innsbruck, Innsbruck, Austria

Search for other papers by Johann Stötter in
Current site
Google Scholar
PubMed
Close
,
Renate Anna Irma Wilcke Wegener Center for Climate and Global Change, Graz, Austria

Search for other papers by Renate Anna Irma Wilcke in
Current site
Google Scholar
PubMed
Close
, and
Andreas Gobiet Wegener Center for Climate and Global Change, Graz, Austria

Search for other papers by Andreas Gobiet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A hydrometeorological model chain is applied to investigate climate change effects on natural and artificial snow conditions in the Schladming region in Styria (Austria). Four dynamically refined realizations of the IPCC A1B scenario covering the warm/cold and wet/dry bandwidth of projected changes in temperature and precipitation in the winter half-year are statistically downscaled and bias corrected prior to their application as input for a physically based, distributed energy-balance snow model. However, owing to the poor skills in the reproduction of past climate and snow conditions in the considered region, one realization had to be removed from the selection to avoid biases in the results of the climate change impact analysis. The model’s capabilities in the simulation of natural and artificial snow conditions are evaluated and changes in snow conditions are addressed by comparing the number of snow cover days, the length of the ski season, and the amounts of technically produced snow as simulated for the past and the future. The results for natural snow conditions indicate decreases in the number of snow cover days and the ski season length of up to >25 and >35 days, respectively. The highest decrease in the calculated ski season length has been found for elevations between 1600 and 2700 m MSL, with an average decrease rate of ~2.6 days decade−1. For the exemplary ski site considered, the ski season length simulated for natural snow conditions decreases from >50 days at present to ~40 days in the 2050s. Technical snow production allows the season to be prolonged by ~80 days and hence allows ski season lengths of ~120 days until the end of the scenario period in 2050.

Corresponding author address: Thomas Marke, Institute of Geography, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria. E-mail: thomas.marke@uibk.ac.at

Abstract

A hydrometeorological model chain is applied to investigate climate change effects on natural and artificial snow conditions in the Schladming region in Styria (Austria). Four dynamically refined realizations of the IPCC A1B scenario covering the warm/cold and wet/dry bandwidth of projected changes in temperature and precipitation in the winter half-year are statistically downscaled and bias corrected prior to their application as input for a physically based, distributed energy-balance snow model. However, owing to the poor skills in the reproduction of past climate and snow conditions in the considered region, one realization had to be removed from the selection to avoid biases in the results of the climate change impact analysis. The model’s capabilities in the simulation of natural and artificial snow conditions are evaluated and changes in snow conditions are addressed by comparing the number of snow cover days, the length of the ski season, and the amounts of technically produced snow as simulated for the past and the future. The results for natural snow conditions indicate decreases in the number of snow cover days and the ski season length of up to >25 and >35 days, respectively. The highest decrease in the calculated ski season length has been found for elevations between 1600 and 2700 m MSL, with an average decrease rate of ~2.6 days decade−1. For the exemplary ski site considered, the ski season length simulated for natural snow conditions decreases from >50 days at present to ~40 days in the 2050s. Technical snow production allows the season to be prolonged by ~80 days and hence allows ski season lengths of ~120 days until the end of the scenario period in 2050.

Corresponding author address: Thomas Marke, Institute of Geography, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria. E-mail: thomas.marke@uibk.ac.at
Save
  • Abegg, B., Kolb M. , Sprengel D. , and Hoffmann V. H. , 2008: Klimawandel aus der Sicht der Schweizer Seilbahnunternehmer. Jahrbuch der Schweizerischen Tourismuswirtschaft 2008, IDT-HSG, 73–83.

  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp.

  • Aronica, G., Bates P. D. , and Horritt M. S. , 2002: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol. Processes, 16, 20012016, doi:10.1002/hyp.398.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Search Google Scholar
    • Export Citation
  • BMLFUW, 2010: Anpassungsstrategien an den Klimawandel für Österreichs Wasserwirtschaft. Public Rep., Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna, Austria, 486 pp.

  • Christensen, J. H., and Christensen O. B. , 2007: A summary of the prudence model projections of changes in European climate by the end of this century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Search Google Scholar
    • Export Citation
  • Cline, D., Elder K. , and Bales R. , 1998: Scale effects in a distributed snow water equivalence and snowmelt model for mountain basins. Hydrol. Processes, 12, 15271536, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1527::AID-HYP678>3.0.CO;2-E.

    • Search Google Scholar
    • Export Citation
  • Corripio, J. G., 2003: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. Int. J. Geogr. Inf. Sci., 17, 1–23, doi:10.1080/713811744.

    • Search Google Scholar
    • Export Citation
  • EEA, 2012: Climate change, impacts and vulnerability in Europe 2012: An indicator-based report. EEA Rep. 12/2012, 300 pp. [Available online at www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012.]

  • Elsasser, H., and Messerli P. , 2001: The vulnerability of the snow industry in the Swiss Alps. Mt. Res. Dev., 21, 335339, doi:10.1659/0276-4741(2001)021[0335:TVOTSI]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fierz, C., Riber P. , Adams E. E. , Curran A. C. , Fohn P. M. B. , Lehning M. , and Plüss C. , 2003: Evaluation of snow-surface energy balance models in alpine terrain. J. Hydrol., 282, 7694, doi:10.1016/S0022-1694(03)00255-5.

    • Search Google Scholar
    • Export Citation
  • Formayer, H., Hofstätter M. , and Haas P. , 2009: Untersuchung der Schneesicherheit und der potenziellen Beschneiungszeiten in Schladming und Ramsau: Endbericht zum Projekt STRATEGE. BOKU-Met Rep. 11, 48 pp. [Available online at https://meteo.boku.ac.at/report/BOKU-Met_Report_11_online.pdf.]

  • Fowler, H. J., Blenkinsop S. , and Tebaldi C. , 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 1547–1578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and Schär C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Greuell, W., Knap W. , and Smeets P. , 1997: Elevational changes in meteorological variables along a midlatitude glacier during summer. J. Geophys. Res.,102, 25 941–25 954, doi:10.1029/97JD02083.

  • Gruber, S., 2007: A mass-conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models. Water Resour. Res., 43, W06412, doi:10.1029/2006WR004868.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , and Salomonson V. V. , 1995: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ., 54, 127140, doi:10.1016/0034-4257(95)00137-P.

    • Search Google Scholar
    • Export Citation
  • Hanzer, F., Marke T. , and Strasser U. , 2014: Distributed, explicit modelling of technical snow production for a ski area in the Schladming region (Austrian Alps). Cold Reg. Sci. Technol., doi:10.1016/j.coldregions.2014.08.003, in press.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and Griggs D. J. , 2004: Ensembles-based predictions of climate changes and their impacts. Eos, Trans. Amer. Geophys. Union, 85, 566, doi:10.1029/2004EO520005.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., Kane D. L. , Benson C. S. , and Everett K. R. , 1996: Energy balance and hydrological processes in an Arctic watershed. Landscape Function: Implications for Ecosystem Response to Disturbance: A Case Study in Arctic Tundra, J. F. Reynolds and J. D. Tenhunen, Eds., Ecologic Studies Series, Vol. 120, Springer, 131–154, doi:10.1007/978-3-662-01145-4_6.

  • Hock, R., 2003: Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104115, doi:10.1016/S0022-1694(03)00257-9.

  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. Tech. Rep., Cold Regions Research and Engineering Laboratory, Hanover, NH, 61 pp.

  • Kane, D., Hinzman L. D. , Benson C. S. , and Liston G. E. , 1991: Snow hydrology of a headwater Arctic basin: 1. Physical measurements and process studies. Water Resour. Res.,27, 1099–1109, doi:10.1029/91WR00262.

  • Kirnbauer, R., Blöschl G. , and Gutknecht D. , 1994: Entering the era of distributed snow models. Nord. Hydrol., 25, 124.

  • Klemes, V., 1990: The modelling of mountain hydrology: The ultimate challenge. IAHS Publ., 190, 29–43. [Available online at http://iahs.info/uploads/dms/iahs_190_0029.pdf.]

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397, doi:10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Elder K. , 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276, doi:10.1175/JHM548.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Elder K. , 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234, doi:10.1175/JHM486.1.

    • Search Google Scholar
    • Export Citation
  • Loibl, W., Beck A. , Dorninger M. , Formayer H. , Gobiet A. , and Schöner W. , Eds., 2007: Kwiss-Programm reclip:more research for climate protection: Model run evaluation, Project Year 3 Rep. 2006, ARC-sys-0122, 73 pp. [Available online at http://foresight.ait.ac.at/SE/projects/reclip/reports/ARC-sys-reclip_more_PJ3rep.pdf.]

  • Luce, C. H., Tarboton D. G. , and Cooley K. R. , 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12, 1671–1683, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Marke, T., 2008: Development and application of a model interface to couple land surface models with regional climate models for climate change risk assessment in the upper Danube watershed. Ph.D. thesis, Ludwig Maximilians University, 188 pp.

  • Marke, T., Mauser W. , Pfeiffer A. , and Zängl G. , 2011a: A pragmatic approach for the downscaling and bias correction of regional climate simulations: Evaluation in hydrological modeling. Geosci. Model Dev., 4, 759770, doi:10.5194/gmd-4-759-2011.

    • Search Google Scholar
    • Export Citation
  • Marke, T., Mauser W. , Pfeiffer A. , Zängl G. , and Jacob D. , 2011b: The effect of downscaling on river runoff modeling: A hydrological case study in the upper Danube watershed. Hydrol. Earth Syst. Sci. Discuss., 8, 63316384, doi:10.5194/hessd-8-6331-2011.

    • Search Google Scholar
    • Export Citation
  • Marks, D., 1988: Climate, energy exchange, and snowmelt in Emerald Lake watershed, Sierra Nevada. Ph.D. thesis, University of California, Santa Barbara, 158 pp.

  • Marsh, P., 1999: Snowcover formation and melt: Recent advances and future prospects. Hydrol. Processes, 13, 21172134, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2117::AID-HYP869>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Mauser, W., and Ludwig R. , 2002: GLOWA DANUBE: A research concept to develop integrative techniques, scenarios and strategies regarding the global change of the water cycle. Climatic Change: Implications for the Hydrological Cycle and for Water Management, M. Beniston, Ed., Advances in Global Change Research, Vol. 10, Springer, 171–188, doi:10.1007/0-306-47983-4_10.

  • Nakicenovic, N., and Swart R. , Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nešpor, V., and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olefs, M., Fischer A. , and Lang J. , 2010: Boundary conditions for artificial snow production in the Austrian Alps. J. Appl. Meteor. Climatol., 49, 1096–1113, doi:10.1175/2010JAMC2251.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., Gobiet A. , and Truhetz H. , 2011: Analysis of uncertainty in large scale climate change projections over Europe. Meteor. Z., 20, 383395, doi:10.1127/0941-2948/2011/0286.

    • Search Google Scholar
    • Export Citation
  • Prettenthaler, F., 2009: Der Klimawandel als Herausforderung fr den steirischen Tourismus - Fokus Wintertourismus. InTeReg Research Rep. 04-2009, 18 pp. [Available online at www.linder-gruber.at/de/newsletter/druckversion/Joaneum_Klimawandel_Studie.pdf.]

  • Rohrer, M. B., 1992: Die Schneedecke im Schweizer Alpenraum und ihre Modellierung. Züricher Geographische Schriften, Vol. 49, Geographisches Institut, Eidgenössische Technische Hochschule Zürich, 178 pp.

  • Schmidt, P., Steiger R. , and Matzarakis A. , 2012: Artificial snowmaking possibilities and climate change based on regional climate modeling in the southern black forest. Meteor. Z., 21, 167172, doi:10.1127/0941-2948/2012/0281.

    • Search Google Scholar
    • Export Citation
  • Scott, D., McBoyle G. , and Mills B. , 2003: Climate change and the skiing industry in southern Ontario (Canada): Exploring the importance of snowmaking as a technical adaptation. Climate Res., 23, 171181, doi:10.3354/cr023171.

    • Search Google Scholar
    • Export Citation
  • Scott, D., McBoyle G. , and Minogue A. , 2007: Climate change and Quebec’s ski industry. Global Environ. Change, 17, 181190, doi:10.1016/j.gloenvcha.2006.05.004.

    • Search Google Scholar
    • Export Citation
  • Steiger, R., 2010: The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Climate Res., 43, 251–262, doi:10.3354/cr00941.

    • Search Google Scholar
    • Export Citation
  • Strasser, U., 2008: Modelling of the mountain snow cover in the Berchtesgaden National Park. Research Rep. 55, 184 pp.

  • Strasser, U., and Marke T. , 2010: ESCIMO.spread—A spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions. Geosci. Model Dev., 3, 643652, doi:10.5194/gmd-3-643-2010.

    • Search Google Scholar
    • Export Citation
  • Strasser, U., Corripio J. G. , Brock B. , Pellicciotti F. , Burlando P. , and Funk M. , 2004: Spatial and temporal variability of meteorological variables at Haut Glacier d’Arolla (Switzerland) during the ablation season 2001: Measurements and simulations. J. Geophys. Res., 109, D03103, doi:10.1029/2003JD003973.

    • Search Google Scholar
    • Export Citation
  • Strasser, U., Bernhardt M. , Weber M. , Liston G. E. , and Mauser W. , 2008: Is snow sublimation important in the alpine water balance? Cryosphere, 2, 53–66, doi:10.5194/tc-2-53-2008.

    • Search Google Scholar
    • Export Citation
  • Strasser, U., Warscher M. , and Liston G. E. , 2011: Modeling snow canopy processes on an idealized mountain. J. Hydrometeor., 12, 663677, doi:10.1175/2011JHM1344.1.

    • Search Google Scholar
    • Export Citation
  • Strasser, U., and Coauthors, 2014: Coupled numerical modelling for inter- and transdisciplinary integration in climate change impact research: Dimensions of integration and examples of interface design. Environ. Modell. Software, 60, 180187, doi:10.1016/j.envsoft.2014.06.014.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M., Gobiet A. , and Leuprecht A. , 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, doi:10.1002/joc.2168.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M., Gobiet A. , and Heinrich G. , 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van der Linden, P., and Mitchell J. F. B. , 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ensembles project. Tech. Rep., 160 pp. [Available online at http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.]

  • Warscher, M., Strasser U. , Kraller G. , Marke T. , Franz H. , and Kunstmann H. , 2013: Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high alpine terrain of the Berchtesgaden Alps. Water Resour. Res., 49, 2619–2637, doi:10.1002/wrcr.20219.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and Wigley T. M. L. , 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21, 530–548, doi:10.1177/030913339702100403.

    • Search Google Scholar
    • Export Citation
  • Wilcke, R. A. I., Mendlik T. , and Gobiet A. , 2013: Multi-variable downscaling and error-correction of regional climate models. Climatic Change, 120, 871–887, doi:10.1007/s10584-013-0845-x.

    • Search Google Scholar
    • Export Citation
  • WMO, 1986: Intercomparison of models of snowmelt runoff. Operational Hydrology Rep. 23/WMO Rep. 646, 442 pp.

  • Wolfsegger, C., Gössling S. , and Scott D. , 2008: Climate change risk appraisal in the Austrian ski industry. Tourism Rev. Int., 12, 1323, doi:10.3727/154427208785899948.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1008 183 12
PDF Downloads 584 154 2