Intra-Event Trends in Stable Isotopes: Exploring Midlatitude Precipitation Using a Vertically Pointing Micro Rain Radar

Catherine L. Muller School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Search for other papers by Catherine L. Muller in
Current site
Google Scholar
PubMed
Close
,
Andy Baker Connected Waters Initiative Research Centre, University of New South Wales Australia, Sydney, New South Wales, Australia

Search for other papers by Andy Baker in
Current site
Google Scholar
PubMed
Close
,
Ian J. Fairchild School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Search for other papers by Ian J. Fairchild in
Current site
Google Scholar
PubMed
Close
,
Chris Kidd Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Chris Kidd in
Current site
Google Scholar
PubMed
Close
, and
Ian Boomer School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom

Search for other papers by Ian Boomer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Annual, monthly, and daily analyses of stable isotopes in precipitation are commonly made worldwide, yet only a few studies have explored the variations occurring on short time scales within individual precipitation events, particularly at midlatitude locations. This study examines hydrogen isotope data from sequential, intra-event samples from 16 precipitation events during different seasons and a range of synoptic conditions over an 18-month period in Birmingham, United Kingdom. Precipitation events were observed simultaneously using a vertically pointing micro rain radar (MRR), which, for the first time at a midlatitude location, allowed high-resolution examination of the microphysical characteristics (e.g., rain rate, fall velocity, and drop size distributions) that may influence the local isotopic composition of rainwater. The range in the hydrogen isotope ratio (δD, where D refers to deuterium) in 242 samples during 16 events was from −87.0‰ to +9.2‰, while the largest variation observed in a single event was 55.4‰. In contrast to previous work, the results indicate that some midlatitude precipitation events do indeed show significant intra-event trends that are strongly influenced by precipitation processes and parameters such as rain rate, melting-level height, and droplet sizes. Inverse relationships between rain rate and isotopic composition are observed, representing an example of a local type of “amount effect,” a still poorly understood process occurring at different scales. For these particular events, the mean δ value may therefore not provide all the relevant information. This work has significance for the testing and development of isotope-enabled cloud-resolving models and land surface models at higher resolutions, and it provides improved insights into a range of environmental processes that are influenced by subsampled precipitation events.

Corresponding author address: Andy Baker, Connected Waters Initiative Research Centre, UNSW Australia, Sydney NSW 2052, Australia. E-mail: a.baker@unsw.edu.au

Abstract

Annual, monthly, and daily analyses of stable isotopes in precipitation are commonly made worldwide, yet only a few studies have explored the variations occurring on short time scales within individual precipitation events, particularly at midlatitude locations. This study examines hydrogen isotope data from sequential, intra-event samples from 16 precipitation events during different seasons and a range of synoptic conditions over an 18-month period in Birmingham, United Kingdom. Precipitation events were observed simultaneously using a vertically pointing micro rain radar (MRR), which, for the first time at a midlatitude location, allowed high-resolution examination of the microphysical characteristics (e.g., rain rate, fall velocity, and drop size distributions) that may influence the local isotopic composition of rainwater. The range in the hydrogen isotope ratio (δD, where D refers to deuterium) in 242 samples during 16 events was from −87.0‰ to +9.2‰, while the largest variation observed in a single event was 55.4‰. In contrast to previous work, the results indicate that some midlatitude precipitation events do indeed show significant intra-event trends that are strongly influenced by precipitation processes and parameters such as rain rate, melting-level height, and droplet sizes. Inverse relationships between rain rate and isotopic composition are observed, representing an example of a local type of “amount effect,” a still poorly understood process occurring at different scales. For these particular events, the mean δ value may therefore not provide all the relevant information. This work has significance for the testing and development of isotope-enabled cloud-resolving models and land surface models at higher resolutions, and it provides improved insights into a range of environmental processes that are influenced by subsampled precipitation events.

Corresponding author address: Andy Baker, Connected Waters Initiative Research Centre, UNSW Australia, Sydney NSW 2052, Australia. E-mail: a.baker@unsw.edu.au
Save
  • Adar, E. M., Karnieli A. , Sandler B. Z. , Issar A. , Wolf M. , and Landsman L. , 1991: A mechanical sequential rain sampler for isotopic and chemical analyses. Final Scientific Rep., Contract 5542/RO/Rb, IAEA, Vienna, Austria, 32 pp.

  • Allen, S. K., and Coauthors, 2012: Summary for policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 1–19.

    • Search Google Scholar
    • Export Citation
  • Baldini, L. M., McDermott F. , Foley A. M. , and Baldini J. U. L. , 2008: Spatial variability in the European winter precipitation δ18O–NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett., 35, L04709, doi:10.1029/2007GL032027.

    • Search Google Scholar
    • Export Citation
  • Baldini, L. M., McDermott F. , Baldini J. U. L. , Fischer M. J. , and Molloff M. , 2010: An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales. Climate Dyn., 35, 977993, doi:10.1007/s00382-010-0774-6.

    • Search Google Scholar
    • Export Citation
  • Barras, V., and Simmonds I. , 2009: Observation and modeling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J. Geophys. Res., 114, D23308, doi:10.1029/2009JD012132.

    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M., Stott L. , Yoshimura K. , Johnson K. , and Sinha A. , 2012: Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Climate Dyn., 38, 433454, doi:10.1007/s00382-011-1262-3.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1958: On the uses of tritium as a tracer for water in nature. Proceedings of the Second UN Conference on the Peaceful Uses of Atomic Energy, Vol. 18, IAEA, 336343.

  • Celle-Jeanton, H., Gonfiantini R. , Travi Y. , and Sol B. , 2004: Oxygen-18 variations of rainwater during precipitation: Application of the Rayleigh model to selected rainfalls in southern France. J. Hydrol., 289, 165177, doi:10.1016/j.jhydrol.2003.11.017.

    • Search Google Scholar
    • Export Citation
  • Coplen, T. B., Herczeg A. L. , and Barnes C. , 2000: Isotope engineering: Using stable isotopes of the water molecule to solve practical problems. Environmental Tracers in Subsurface Hydrology, P. G. Cook and A. I. Herczeg, Eds., Kluwer Academic, 529 pp.

  • Coplen, T. B., Neiman P. J. , White A. B. , Landwehr J. M. , Ralph F. M. , and Dettinger M. D. , 2008: Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm. Geophys. Res. Lett., 35, L21808, doi:10.1029/2008GL035481.

    • Search Google Scholar
    • Export Citation
  • Crawford, J., Hughes C. E. , and Parkes S. D. , 2013: Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney basin, Australia? J. Hydrol., 507, 213226, doi:10.1016/j.jhydrol.2013.10.031.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Diederich, M., Crewell S. , Simmer C. , and Uijlenhoet R. , 2004: Investigation of rainfall microstructure and variability using vertically pointing radar and disdrometer. Proc. ERAD 2004, Visby, Sweden, SMHI, 8086.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Rolph G. D. , 2003: HYSPLIT—Hybrid Single Particle Lagrangian Integrated Trajectory Model. NOAA Air Resources Laboratory, Silver Spring, MD. [Available online at www.arl.noaa.gov/ready/hysplit4.html.]

  • Fairchild, I. J., and Baker A. , 2012: Speleothem Science: From Process to Past Environments. Wiley, 450 pp.

  • Field, R. D., 2010: Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the northern annular mode. J. Geophys. Res., 115, D12101, doi:10.1029/2009JD013370.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., Machta L. , and Soller R. , 1962: Water vapour exchange between a water droplet and its environment. J. Geophys. Res., 67, 27612766, doi:10.1029/JZ067i007p02761.

    • Search Google Scholar
    • Export Citation
  • Gat, J. R., Mook W. G. , and Meijer H. A. J. , 2001: Atmospheric Water. Vol. 2, Environmental Isotopes in the Hydrological Cycle, UNESCO/IAEA, 235 pp.

  • Gedzelman, S. D., and Lawrence J. R. , 1990: The isotopic composition of precipitation from two extratropical cyclones. Mon. Wea. Rev., 118, 495509, doi:10.1175/1520-0493(1990)118<0495:TICOPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and Arnold R. , 1994: Modeling the isotopic composition of precipitation. J. Geophys. Res., 99, 10 45510 472, doi:10.1029/93JD03518.

    • Search Google Scholar
    • Export Citation
  • Gonfiantini, R., Roche M.-A. , Olivry J.-C. , Fontes J.-C. , and Zuppi G. M. , 2001: The altitude effect on the isotopic composition of tropical rains. Chem. Geol., 181, 147167, doi:10.1016/S0009-2541(01)00279-0.

    • Search Google Scholar
    • Export Citation
  • Guglielmo, F., and Coauthors, 2013: Using water isotopes in the evaluation of land surface models. Geophysical Research Abstracts, Vol. 15, Abstract EGU2013-11436-1. [Available online at http://meetingorganizer.copernicus.org/EGU2013/EGU2013-11436-1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Helsen, M. M., van de Wal R. S. W. , van den Broeke M. R. , van As D. , Meijer H. A. J. , and Reijmer C. H. , 2005: Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature. Tellus, 57B, 423435, doi:10.1111/j.1600-0889.2005.00162.x.

    • Search Google Scholar
    • Export Citation
  • Hoefs, J., 1997: Stable Isotope Geochemistry. 4th ed. Springer-Verlag, 201 pp.

  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic, 573 pp.

  • Jouzel, J., 1986: Isotopes in cloud physics: Multiphase and multistage condensation process. Handbook of Environmental Isotope Geochemistry, Vol. 2, P. Fritz and J. Ch. Fontes, Eds., Elsevier Science, 61–112.

  • Kurita, N., 2013: Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos., 118, 10 37610 390, doi:10.1002/jgrd.50754.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., Ichiyanagi K. , Matsumoto J. , Yamanaka M. D. , and Ohata T. , 2009: The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor., 102, 113122, doi:10.1016/j.gexplo.2009.03.002.

    • Search Google Scholar
    • Export Citation
  • Lai, C. T., Ehleringer J. R. , Bond B. J. , and Paw U. K. T. , 2006: Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests. Plant Cell Environ., 29, 7794, doi:10.1111/j.1365-3040.2005.01402.x.

    • Search Google Scholar
    • Export Citation
  • Lawrence, J. R., Gedzelman S. D. , White J. W. C. , Smiley D. , and Lazov P. , 1982: Storm trajectories in eastern US D/H isotopic composition of precipitation. Nature, 296, 638640, doi:10.1038/296638a0.

    • Search Google Scholar
    • Export Citation
  • Lee, J., and Fung I. , 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Levin, M., Gat J. R. , and Issar S. A. , 1980: Precipitation, flood and groundwater of the Negev Highlands: An isotopic study of desert hydrology. Arid-Zone Hydrology: Investigations with Isotope Techniques, IAEA, 3–22.

  • Mason, B. J., and Ramanadham R. , 1954: Modification of the size distribution of falling raindrops by coalescence. Quart. J. Roy. Meteor. Soc., 80, 388394, doi:10.1002/qj.49708034508.

    • Search Google Scholar
    • Export Citation
  • Miyake, Y., Matsubaya O. , and Nishihara C. , 1968: An isotopic study on meteoric precipitation. Pap. Meteor. Geophys., 19, 243266.

  • Morrison, J., Brockwell T. , Merren F. F. , and Phillips A. M. , 2001: On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Anal. Chem., 73, 35703575, doi:10.1021/ac001447t.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., Baker A. , Hutchinson R. , Fairchild I. J. , and Kidd C. , 2008: Analysis of rainwater dissolved organic carbon compounds using fluorescence spectrophotometry. Atmos. Environ., 42, 80368045, doi:10.1016/j.atmosenv.2008.06.042.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., Kidd C. , Fairchild I. J. , and Baker A. , 2010: Investigation into clouds and precipitation over an urban area using micro rain radars, satellite remote sensing and fluorescence spectrophotometry. Atmos. Res., 96, 241255, doi:10.1016/j.atmosres.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Munksgaard, N. C., Wurster C. M. , Bass A. , and Bird M. I. , 2012: Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrol. Processes, 26, 36303634, doi:10.1002/hyp.9505.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., Wernli H. , and Yoshimura K. , 2012: The isotopic composition of precipitation from a winter storm—A case study with the limited-area model COSMOiso. Atmos. Chem. Phys., 12, 16291648, doi:10.5194/acp-12-1629-2012.

    • Search Google Scholar
    • Export Citation
  • Poage, M. A., and Chamberlain C. P. , 2001: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. Amer. J. Sci., 301, 115, doi:10.2475/ajs.301.1.1.

    • Search Google Scholar
    • Export Citation
  • Rindsberger, M., Jaffe S. , Rahamim S. , and Gat J. R. , 1990: Patterns of the isotopic composition of precipitation in time and space: Data from the Israeli storm water collection program. Tellus, 42B, 263271, doi:10.1034/j.1600-0889.1990.t01-2-00005.x.

    • Search Google Scholar
    • Export Citation
  • Risi, C., Bony S. , and Vimeux F. , 2008a: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943.

    • Search Google Scholar
    • Export Citation
  • Risi, C., Bony S. , Vimeux F. , Descroix L. , Ibrahim B. , Lebreton E. , Mamadou I. , and Sultan B. , 2008b: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett., 35, L24808, doi:10.1029/2008GL035920.

    • Search Google Scholar
    • Export Citation
  • Risi, C., and Coauthors, 2012: Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res., 117, D05303, doi:10.1029/2011JD016621.

    • Search Google Scholar
    • Export Citation
  • Risi, C., Landais A. , Winkler R. , and Vimeux F. , 2013: Can we determine what controls the spatio–temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model? Climate Past, 9, 21732193, doi:10.5194/cp-9-2173-2013.

    • Search Google Scholar
    • Export Citation
  • Rozanski, K., and Sonntag C. , 1982: Vertical distribution of deuterium in atmospheric water vapour. Tellus, 34A, 135141, doi:10.1111/j.2153-3490.1982.tb01800.x.

    • Search Google Scholar
    • Export Citation
  • Rozanski, K., Araguás-Araguás L. , and Gonfiantini R. , 1993: Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, Geophys. Monogr., Vol. 78, Amer. Geophys. Union, 1–36, doi:10.1029/GM078p0001.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1992: Deuterium in North Atlantic storm tops. J. Atmos. Sci., 49, 20412057, doi:10.1175/1520-0469(1992)049<2041:DINAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., 2006: Tropospheric transport of water vapour: Lagrangian and Eulerian perspectives. Ph.D. dissertation 16623, ETH Zurich, 245 pp. [Available online at http://e-collection.library.ethz.ch/eserv/eth:28833/eth-28833-02.pdf.]

  • Som, S. M., Catling D. C. , Hammeijer J. P. , Polivka P. M. , and Buick R. , 2012: Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature, 484, 359362, doi:10.1038/nature10890.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R., Ramesh R. , and Narayana Rao T. , 2012: Relationship between stable isotope ratios and drop size distribution in tropical rainfall. J. Atmos. Chem., 69, 2331, doi:10.1007/s10874-012-9227-4.

    • Search Google Scholar
    • Export Citation
  • Strong, M., Sharp Z. D. , and Gutzler D. S. , 2007: Diagnosing moisture transport using D/H ratios of water vapour. Geophys. Res. Lett., 34, L03404, doi:10.1029/2006GL028307.

    • Search Google Scholar
    • Export Citation
  • Sturm, C., Zhang Q. , and Noone D. , 2010: An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology. Climate Past, 6, 115129, doi:10.5194/cp-6-115-2010.

    • Search Google Scholar
    • Export Citation
  • Taupin, J.-D., and Gallaire R. , 1998: Isotopic variability in some intra-storm in the region of Niamey, Niger. C. R. Acad. Sci., Ser. IIa,326, 493498.

    • Search Google Scholar
    • Export Citation
  • Treble, P., Budd W. F. , Hope P. K. , and Rustomji P. K. , 2005: Synoptic scale climate patterns associated with rainfall δ18O in southern Australia. J. Hydrol., 302, 270282, doi:10.1016/j.jhydrol.2004.07.003.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., Gallaire R. , Bony S. , Hoffmann G. , and Chiang J. C. H. , 2005: What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth Planet. Sci. Lett., 240, 205220, doi:10.1016/j.epsl.2005.09.031.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., Kanamitsu M. , Noone D. , and Oki T. , 2008: Historical isotope simulation using reanalysis atmospheric data. J. Geophys. Res., 113, D19108, doi:10.1029/2008JD010074.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., Kanamitsu M. , and Dettinger M. , 2010: Regional downscaling for stable water isotopes: A case study of an atmospheric river event. J. Geophys. Res., 115, D18114, doi:10.1029/2010JD014032.

    • Search Google Scholar
    • Export Citation
  • Yurtsever, Y., and Gat J. R. , 1981: Atmospheric waters. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, J. R. Gat and R. Gonfiantini, Eds., Tech. Rep. 2010, IAEA, 103–142.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 755 213 17
PDF Downloads 483 148 11