Monitoring Agricultural Risk in Canada Using L-Band Passive Microwave Soil Moisture from SMOS

Catherine Champagne Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Search for other papers by Catherine Champagne in
Current site
Google Scholar
PubMed
Close
,
Andrew Davidson Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Search for other papers by Andrew Davidson in
Current site
Google Scholar
PubMed
Close
,
Patrick Cherneski Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Search for other papers by Patrick Cherneski in
Current site
Google Scholar
PubMed
Close
,
Jessika L’Heureux Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Search for other papers by Jessika L’Heureux in
Current site
Google Scholar
PubMed
Close
, and
Trevor Hadwen Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Search for other papers by Trevor Hadwen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Soil moisture from Soil Moisture Ocean Salinity (SMOS) passive microwave satellite data was assessed as an information source for identifying regions experiencing climate-related agricultural risk for a period from 2010 to 2013. Both absolute soil moisture and soil moisture anomalies compared to a 4-yr SMOS satellite baseline were used in the assessment. The 4-yr operational period of SMOS was wetter than the 30-yr climate normal in many locations, particularly in the late summer for most regions and in the spring for the province of Manitoba. This leads to a somewhat unrepresentative baseline that skews anomaly measures at different parts of the growing season. SMOS soil moisture does, however, show a clear trend where extremes are present, with drier-than-average conditions during periods that drought and dry soil risks were identified and wetter-than-average conditions when flooding and excess moisture were present. Areas where extreme weather events caused crop losses were identifiable using SMOS soil moisture, both at the provincial and regional scales. The variability in soil moisture between at-risk areas and normal areas is very small but consistent, both geographically and over time, making SMOS a good real-time indicator for risk assessment.

Denotes Open Access content.

Corresponding author address: Catherine Champagne, Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A-0C6, Canada. E-mail: catherine.champagne@agr.gc.ca

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Abstract

Soil moisture from Soil Moisture Ocean Salinity (SMOS) passive microwave satellite data was assessed as an information source for identifying regions experiencing climate-related agricultural risk for a period from 2010 to 2013. Both absolute soil moisture and soil moisture anomalies compared to a 4-yr SMOS satellite baseline were used in the assessment. The 4-yr operational period of SMOS was wetter than the 30-yr climate normal in many locations, particularly in the late summer for most regions and in the spring for the province of Manitoba. This leads to a somewhat unrepresentative baseline that skews anomaly measures at different parts of the growing season. SMOS soil moisture does, however, show a clear trend where extremes are present, with drier-than-average conditions during periods that drought and dry soil risks were identified and wetter-than-average conditions when flooding and excess moisture were present. Areas where extreme weather events caused crop losses were identifiable using SMOS soil moisture, both at the provincial and regional scales. The variability in soil moisture between at-risk areas and normal areas is very small but consistent, both geographically and over time, making SMOS a good real-time indicator for risk assessment.

Denotes Open Access content.

Corresponding author address: Catherine Champagne, Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A-0C6, Canada. E-mail: catherine.champagne@agr.gc.ca

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Save
  • Albergel, C., and Coauthors, 2013: Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sens. Environ., 138, 7789, doi:10.1016/j.rse.2013.07.009.

    • Search Google Scholar
    • Export Citation
  • Al Bitar, A., Leroux D. , Kerr Y. H. , Merlin O. , Richaume P. , Sahoo A. , and Wood E. F. , 2012: Evaluation of SMOS soil moisture products over continental U.S. Using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens., 50, 15721586, doi:10.1109/TGRS.2012.2186581.

    • Search Google Scholar
    • Export Citation
  • Bircher, S., Balling J. E. , Skou N. , and Kerr Y. H. , 2012: Validation of SMOS brightness temperatures during the HOBE airborne campaign, western Denmark. IEEE Trans. Geosci. Remote Sens., 50, 14681482, doi:10.1109/TGRS.2011.2170177.

    • Search Google Scholar
    • Export Citation
  • Champagne, C., McNairn H. , and Berg A. A. , 2011: Monitoring agricultural soil moisture extremes in Canada using passive microwave remote sensing. Remote Sens. Environ., 115, 24342444, doi:10.1016/j.rse.2011.04.030.

    • Search Google Scholar
    • Export Citation
  • Dall’Amico, J. T., Schlenz F. , Loew A. , and Mauser W. , 2012: First results of SMOS soil moisture validation in the upper Danube catchment. IEEE Trans. Geosci. Remote Sens., 50, 15071516, doi:10.1109/TGRS.2011.2171496.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., Walker J. P. , and Rudiger C. , 2013: Can SMOS data be used directly on the 15-km Discrete Global Grid? IEEE Trans. Geosci. Remote Sens., 52, 25382544, doi:10.1109/TGRS.2013.2262501.

    • Search Google Scholar
    • Export Citation
  • Escorihuela, M. J., Chanzy A. , Wigneron J. P. , and Kerr Y. H. , 2010: Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ., 114, 9951001, doi:10.1016/j.rse.2009.12.011.

    • Search Google Scholar
    • Export Citation
  • Fisette, T., and Coauthors, 2005: Towards a national agricultural land cover classification evaluating decision tree approach. Proc. 26th Canadian Symp. on Remote Sensing, Wolfville, NS, Canada, Canadian Aeronautics and Space Institute, 385–389.

  • Fisette, T., and Coauthors, 2013: AAFC annual crop inventory: Status and challenges. Proc. Second Int. Conf. on Agro-Geoinformatics, Fairfax, VA, IEEE, 270–274, doi:10.1109/Argo-Geoinformatics.2013.6621920.

  • Jackson, T. J., and Coauthors, 2012: Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans. Geosci. Remote Sens., 50, 15301543, doi:10.1109/TGRS.2011.2168533.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., Waldteufel P. , Wigneron J. P. , Martinuzzi J. A. , Font J. , and Berger M. A. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, doi:10.1109/36.942551.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2012: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403, doi:10.1109/TGRS.2012.2184548.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J. A., and Dracup J. A. , 2004: An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res., 40, W09304, doi:10.1029/2003WR002610.

    • Search Google Scholar
    • Export Citation
  • Lacava, T., Matgen P. , Brocca L. , Bittelli M. , Pergola N. , Moramarco T. , and Tramutoli V. , 2012: A first assessment of the SMOS soil moisture product with in situ and modeled data in Italy and Luxembourg. IEEE Trans. Geosci. Remote Sens., 50, 16121622, doi:10.1109/TGRS.2012.2186819.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J., Heim R. R. , Svoboda M. , Swail V. , and Englehart P. J. , 2002: Beginning a new era of drought monitoring across North America. Bull. Amer. Meteor. Soc., 83, 11911192.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., and Coauthors, 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, doi:10.1016/j.rse.2012.03.014.

    • Search Google Scholar
    • Export Citation
  • Mironov, V. L., Dobson M. C. , Kaupp V. H. , Komarov S. A. , and Kleshchenko V. N. , 2004: Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens., 42, 773785, doi:10.1109/TGRS.2003.823288.

    • Search Google Scholar
    • Export Citation
  • Nandintsetseg, B., and Shinoda M. , 2013: Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat. Hazards, 66, 9951008, doi:10.1007/s11069-012-0527-4.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCDC, cited 2013: Summer 2012 drought update. [Available online at www.ncdc.noaa.gov/news/summer-2012-drought-update].

  • Rowlandson, T. L., Hornbuckle B. K. , Bramer L. M. , Patton J. C. , and Logsdon S. D. , 2012: Comparisons of evening and morning SMOS passes over the Midwest United States. IEEE Trans. Geosci. Remote Sens., 50, 15441555, doi:10.1109/TGRS.2011.2178158.

    • Search Google Scholar
    • Export Citation
  • Sanchez, N., Martinez-Fernandez J. , Scaini A. , and Perez-Gutierrez C. , 2012: Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans. Geosci. Remote Sens., 50, 16021611, doi:10.1109/TGRS.2012.2186971.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, 17 11517 115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large-scale drought of the continental united states from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Sridhar, V., Hubbard K. G. , You J. S. , and Hunt E. D. , 2008: Development of the soil moisture index to quantify agricultural drought and its “user friendliness” in severity-area-duration assessment. J. Hydrometeor., 9, 660676, doi:10.1175/2007JHM892.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, P. K., Han D. , Rico Ramirez M. A. , and Islam T. , 2013: Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J. Hydrol., 498, 292304, doi:10.1016/j.jhydrol.2013.06.021.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Vicente-Serrano, S., 2006: Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manage., 20, 3760, doi:10.1007/s11269-006-2974-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1287 349 31
PDF Downloads 640 303 15