Development of an Experimental Near-Real-Time Drought Monitor for India

Reepal D. Shah Civil Engineering, and Information Technology Research Academy Water Project: Measurement to Management (M2M), Indian Institute of Technology Gandhinagar, Gujarat, India

Search for other papers by Reepal D. Shah in
Current site
Google Scholar
PubMed
Close
and
Vimal Mishra Civil Engineering, and Information Technology Research Academy Water Project: Measurement to Management (M2M), Indian Institute of Technology Gandhinagar, Gujarat, India

Search for other papers by Vimal Mishra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Persistent and widespread drought hampers water resources management and crop production. India has faced frequent droughts over the last few decades. Despite the detrimental impacts of droughts in India, a real-time monitoring system at appropriate spatial and temporal resolution has been lacking. Here, an experimental drought monitor for India is developed that operates daily at a spatial resolution of 0.25° and provides near-real-time information on droughts. The real-time daily precipitation data are obtained from the Tropical Rainfall Measurement Mission (TRMM) while daily temperatures are obtained from the Global Ensemble Forecast System (GEFS), version 2. Near-real-time precipitation and temperatures are bias corrected using the historic precipitation and temperature data from the India Meteorological Department (IMD). Data extending from the past to near present were reconstructed by combining IMD (1969–2010) with real-time, bias-corrected TRMM and GEFS datasets (2010 onward). The experimental drought monitor provides information on meteorological, hydrological, and agricultural droughts using the standardized precipitation index (SPI), standardized runoff index (SRI), and standardized soil moisture index (SSI), respectively. Soil moisture and runoff are simulated using the Variable Infiltration Capacity (VIC) model in near–real time to estimate the severity and areal extent of agricultural and hydrological droughts. The severity and areal extent of droughts from the experimental drought monitor are successfully evaluated against a satellite-based drought severity index. The experimental drought monitor provides high-resolution drought information (district level) that can be valuable for natural resources management and policy making.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0041.s1.

Corresponding author address: Vimal Mishra, Assistant Professor, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India. E-mail: vmishra@iitgn.ac.in

Abstract

Persistent and widespread drought hampers water resources management and crop production. India has faced frequent droughts over the last few decades. Despite the detrimental impacts of droughts in India, a real-time monitoring system at appropriate spatial and temporal resolution has been lacking. Here, an experimental drought monitor for India is developed that operates daily at a spatial resolution of 0.25° and provides near-real-time information on droughts. The real-time daily precipitation data are obtained from the Tropical Rainfall Measurement Mission (TRMM) while daily temperatures are obtained from the Global Ensemble Forecast System (GEFS), version 2. Near-real-time precipitation and temperatures are bias corrected using the historic precipitation and temperature data from the India Meteorological Department (IMD). Data extending from the past to near present were reconstructed by combining IMD (1969–2010) with real-time, bias-corrected TRMM and GEFS datasets (2010 onward). The experimental drought monitor provides information on meteorological, hydrological, and agricultural droughts using the standardized precipitation index (SPI), standardized runoff index (SRI), and standardized soil moisture index (SSI), respectively. Soil moisture and runoff are simulated using the Variable Infiltration Capacity (VIC) model in near–real time to estimate the severity and areal extent of agricultural and hydrological droughts. The severity and areal extent of droughts from the experimental drought monitor are successfully evaluated against a satellite-based drought severity index. The experimental drought monitor provides high-resolution drought information (district level) that can be valuable for natural resources management and policy making.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0041.s1.

Corresponding author address: Vimal Mishra, Assistant Professor, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India. E-mail: vmishra@iitgn.ac.in

Supplementary Materials

    • Supplemental Materials (DOCX 489.12 KB)
Save
  • AghaKouchak, A., and Nakhjiri N. , 2012: A near real-time satellite-based global drought climate record. Environ. Res. Lett., 7, 044037, doi:10.1088/1748-9326/7/4/044037.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Behrangi A. , Sorooshian S. , Hsu K. , and Amitai E. , 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Mehra A. , Norouzi A. , and Behrangi A. , 2012: Systematic and random errors components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Andermann, C., Bonnet S. , and Gloaguen R. , 2011: Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, doi:10.1029/2011GC003513.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33, L10403, doi:10.1029/2006GL025711.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Ming Y. , and Ramaswamy V. , 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, 1991: Integrated responses of plants to stress. Bioscience, 41, 2936, doi:10.2307/1311538.

  • Cherkauer, K. A., Bowling L. C. , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38, 151159, doi:10.1016/S0921-8181(03)00025-0.

    • Search Google Scholar
    • Export Citation
  • Dahm, C. N., Baker M. A. , Moore D. I. , and Thibault J. R. , 2003: Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biol., 48, 12191231, doi:10.1046/j.1365-2427.2003.01082.x.

    • Search Google Scholar
    • Export Citation
  • FAO, 2011: A severe winter drought in the North China Plain may put wheat production at risk. FAO GIEWS Special Alert 330, 4 pp. [Available online at www.fao.org/docrep/013/al975e/al975e00.pdf.]

  • Feyen, L., and Dankers R. , 2009: Impact of global warming on streamflow drought in Europe. J. Geophys. Res., 114, D17116, doi:10.1029/2008JD011438.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and Coauthors, 2009: Water budget record from Variable Infiltration Capacity (VIC) model. Algorithm Theoretical Basis Doc., 56 pp. [Available online at www.hydro.washington.edu/SurfaceWaterGroup/Publications/Water_Cycle_MEaSUREs_ATBD_VICmodel_submit.doc.]

  • Hamill, T. M., Bates G. T. , Whitaker J. S. , Murray D. R. , Fiorino M. , Galarneau T. J. Jr., Zhu Y. , and Lapenta W. , 2013: NOAA’s second-generation global medium-range ensemble reforecast data set. Bull. Amer. Meteor. Soc.,94, 1553–1565, doi:10.1175/BAMS-D-12-00014.1.

  • Hansen, M. C., DeFries R. S. , Townshend J. R. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and AghaKouchak A. , 2013: Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour., 57, 1218, doi:10.1016/j.advwatres.2013.03.009.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., AghaKouchak A. , Nakhjiri N. , and Farahmanand A. , 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, doi:10.1038/sdata.2014.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2013: Evaluation of version-7 TRMM Multi-Satellite Precipitation Analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water, 6, 3244, doi:10.3390/w6010032.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jalota, S., and Arora V. , 2002: Model-based assessment of water balance components under different cropping systems in north-west India. Agric. Water Manage., 57, 7587, doi:10.1016/S0378-3774(02)00049-5.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc., 78, 621636, doi:10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Liang, X., 1994: Two-layer Variable Infiltration Capacity land surface representation for general circulation models. Water Resources Service TR-140, 233 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980073396.pdf.]

  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 421, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., Doesken N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Proc. 8th Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–183.

  • Mehran, A., and AghaKouchak A. , 2014: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Processes,28, 2262–2270, doi:10.1002/hyp.9779.

  • Mishra, A. K., and Singh V. P. , 2010: A review of drought concepts. J. Hydrol., 391, 202216, doi:10.1016/j.jhydrol.2010.07.012.

  • Mishra, V., and Cherkauer K. A. , 2010: Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the midwestern United States. Agric. For. Meteor., 150, 10301045, doi:10.1016/j.agrformet.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Cherkauer K. A. , and Shukla S. , 2010: Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeor., 11, 4668, doi:10.1175/2009JHM1156.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Smoliak B. V. , Lettenmaier D. P. , and Wallace J. M. , 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, doi:10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Shah R. , and Thrasher B. , 2014: Soil moisture droughts under the retrospective and projected climate in India. J. Hydrometeor., doi:10.1175/JHM-D-13-0177.1, in press.

    • Search Google Scholar
    • Export Citation
  • Mitra, A., Bohra A. K. , Rajeevan M. N. , and Krishnamurti T. N. , 2009: Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J. Meteor. Soc. Japan,87A, 265–279, doi:10.2151/jmsj.87A.265.

  • Mu, Q., Zhao M. , Kimball J. S. , McDowell N. G. , and Running S. W. , 2013: A remotely sensed global terrestrial drought severity index. Bull. Amer. Meteor. Soc., 94, 8398, doi:10.1175/BAMS-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S., and Anders A. , 2009: Very high resolution precipitation climatologies from the tropical rainfall measuring mission precipitation radar. Geophys. Res. Lett., 36, L15815, doi:10.1029/2009GL038026.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Schnur R. , and Lettenmaier D. P. , 2001: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niranjan Kumar, K., Rajeevan M. , Pai D. S. , Srivastava A. K. , and Preethi B. , 2013: On the observed variability of monsoon droughts over India. Wea. Climate Extremes, 1, 4250, doi:10.1016/j.wace.2013.07.006.

    • Search Google Scholar
    • Export Citation
  • Obasi, G. O. P., 1994: WMO’s role in the international decade for natural disaster reduction. Bull. Amer. Meteor. Soc., 75, 16551661, doi:10.1175/1520-0477(1994)075<1655:WRITID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panda, D. K., Mishra A. , Jena S. K. , James B. K. , and Kumar A. , 2007: The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. J. Hydrol., 343, 140153, doi:10.1016/j.jhydrol.2007.06.007.

    • Search Google Scholar
    • Export Citation
  • Pozzi, W., and Coauthors, 2013: Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Amer. Meteor. Soc., 94, 776785, doi:10.1175/BAMS-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Shah, R., and Mishra V. , 2014: Evaluation of the reanalysis products for the monsoon season droughts in India. J. Hydrometeor., 15, 1575–1591, doi:10.1175/JHM-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2008a: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, doi:10.1007/s00382-007-0340-z.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2008b: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , Wen F. , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res.,109, D24108, doi:10.1029/2004JD005182.

  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly spaced data. Proc. 23rd ACM National Conf., New York, NY, Association for Computing Machinery, 517–524.

  • Shukla, S., and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and Katz R. W. , 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and Coauthors, 2011: Advancing the remote sensing of precipitation. Bull. Amer. Meteor. Soc., 92, 12711272, doi:10.1175/BAMS-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A. K., Rajeevan M. , and Kshirsagar S. R. , 2009: Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett., 10, 249254, doi:10.1002/asl.232.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9, 622640, doi:10.1175/2007JHM944.1.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Tian, Y., and Peters-Lidard C. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. , and Eylander J. , 2010: Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeor., 11, 12751285, doi:10.1175/2010JHM1246.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Bohn T. J. , Mahanama S. P. , Koster R. D. , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Lettenmaier D. P. , and Sheffield J. , 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573271, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Zhang, M., Sheng C. , Qi Y. , and Yang Y. , 2013: Evaluation of TRMM summer precipitation over Huai-River basin in China. Adv. Mater. Res.,726–731, 3401–3406, doi:10.4028/www.scientific.net/AMR.726-731.3401.

  • Zhao, M., Running S. W. , and Nemani R. R. , 2006: Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res.,111, G01002, doi:10.1029/2004JG000004.

  • Zhao, T., and Yatagai A. , 2013: Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int. J. Climatol.,34, 2749–2762, doi:10.1002/joc.3872.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1737 416 20
PDF Downloads 1239 223 19