Future Hydrological Regimes in the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment

Andrea Soncini * Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Search for other papers by Andrea Soncini in
Current site
Google Scholar
PubMed
Close
,
Daniele Bocchiola Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, and Ev-K2-CNR Association, Bergamo, Italy

Search for other papers by Daniele Bocchiola in
Current site
Google Scholar
PubMed
Close
,
Gabriele Confortola * Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Search for other papers by Gabriele Confortola in
Current site
Google Scholar
PubMed
Close
,
Alberto Bianchi * Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Search for other papers by Alberto Bianchi in
Current site
Google Scholar
PubMed
Close
,
Renzo Rosso * Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Search for other papers by Renzo Rosso in
Current site
Google Scholar
PubMed
Close
,
Christoph Mayer Bavarian Academy of Sciences, Munich, Germany

Search for other papers by Christoph Mayer in
Current site
Google Scholar
PubMed
Close
,
Astrid Lambrecht Bavarian Academy of Sciences, Munich, Germany

Search for other papers by Astrid Lambrecht in
Current site
Google Scholar
PubMed
Close
,
Elisa Palazzi Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Elisa Palazzi in
Current site
Google Scholar
PubMed
Close
,
Claudio Smiraglia Department of Earth and Environmental Sciences, University of Milan, Milan, Italy

Search for other papers by Claudio Smiraglia in
Current site
Google Scholar
PubMed
Close
, and
Guglielmina Diolaiuti Department of Earth and Environmental Sciences, University of Milan, Milan, Italy

Search for other papers by Guglielmina Diolaiuti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mountain regions of the Hindu Kush, Karakoram, and Himalayas (HKH) are considered Earth’s “third pole,” and water from there plays an essential role for downstream populations. The dynamics of glaciers in Karakoram are complex, and in recent decades the area has experienced unchanged ice cover, despite rapid decline elsewhere in the world (the Karakoram anomaly). Assessment of future water resources and hydrological variability under climate change in this area is greatly needed, but the hydrology of these high-altitude catchments is still poorly studied and little understood. This study focuses on a particular watershed, the Shigar River with the control section at Shigar (about 7000 km2), nested within the upper Indus basin and fed by seasonal melt from two major glaciers (Baltoro and Biafo). Hydrological, meteorological, and glaciological data gathered during 3 years of field campaigns (2011–13) are used to set up a hydrological model, providing a depiction of instream flows, snowmelt, and ice cover thickness. The model is used to assess changes of the hydrological cycle until 2100, via climate projections provided by three state-of-the-art global climate models used in the recent IPCC Fifth Assessment Report under the representative concentration pathway (RCP) emission scenarios RCP2.6, RCP4.5, and RCP8.5. Under all RCPs, future flows are predicted to increase until midcentury and then to decrease, but remaining mostly higher than control run values. Snowmelt is projected to occur earlier, while the ice melt component is expected to increase, with ice thinning considerably and even disappearing below 4000 m MSL until 2100.

Corresponding author address: Daniele Bocchiola, Department of Civil and Environmental Engineering, Politecnico di Milano, L. da Vinci 32, 20133 Milan, Italy. E-mail: daniele.bocchiola@polimi.it

Abstract

The mountain regions of the Hindu Kush, Karakoram, and Himalayas (HKH) are considered Earth’s “third pole,” and water from there plays an essential role for downstream populations. The dynamics of glaciers in Karakoram are complex, and in recent decades the area has experienced unchanged ice cover, despite rapid decline elsewhere in the world (the Karakoram anomaly). Assessment of future water resources and hydrological variability under climate change in this area is greatly needed, but the hydrology of these high-altitude catchments is still poorly studied and little understood. This study focuses on a particular watershed, the Shigar River with the control section at Shigar (about 7000 km2), nested within the upper Indus basin and fed by seasonal melt from two major glaciers (Baltoro and Biafo). Hydrological, meteorological, and glaciological data gathered during 3 years of field campaigns (2011–13) are used to set up a hydrological model, providing a depiction of instream flows, snowmelt, and ice cover thickness. The model is used to assess changes of the hydrological cycle until 2100, via climate projections provided by three state-of-the-art global climate models used in the recent IPCC Fifth Assessment Report under the representative concentration pathway (RCP) emission scenarios RCP2.6, RCP4.5, and RCP8.5. Under all RCPs, future flows are predicted to increase until midcentury and then to decrease, but remaining mostly higher than control run values. Snowmelt is projected to occur earlier, while the ice melt component is expected to increase, with ice thinning considerably and even disappearing below 4000 m MSL until 2100.

Corresponding author address: Daniele Bocchiola, Department of Civil and Environmental Engineering, Politecnico di Milano, L. da Vinci 32, 20133 Milan, Italy. E-mail: daniele.bocchiola@polimi.it
Save
  • Ageta, Y., and Kadota T. , 1992: Predictions of changes of glacier mass balance in the Nepal Himalaya and Tibetan Plateau: A case study of air temperature increase for three glaciers. Ann. Glaciol., 16, 8994.

    • Search Google Scholar
    • Export Citation
  • Aggarwal, P. K., Joshi P. K. , Ingram J. S. I. , and Gupta R. K. , 2004: Adapting food systems of the Indo-Gangetic plains to global environmental change: Key information needs to improve policy formulation. Environ. Sci. Policy, 7, 487498, doi:10.1016/j.envsci.2004.07.006.

    • Search Google Scholar
    • Export Citation
  • Aizen, V. B., Aizen E. M. , and Nikitin S. A. , 2002: Glacier regime on the northern slope of the Himalaya (Xixibangma glaciers). Quat. Int., 97-98, 2739, doi:10.1016/S1040-6182(02)00049-6.

    • Search Google Scholar
    • Export Citation
  • Akhtar, M., Ahmad N. , and Booij M. J. , 2008: The impact of climate change on the water resources of Hindukush–Karakoram–Himalaya region under different glacier coverage scenario. J. Hydrol., 355, 148163, doi:10.1016/j.jhydrol.2008.03.015.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Anders, A. M., Roe G. H. , Hallet B. , Montgomery D. R. , Finnegan N. J. , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Amer., 298, 39–53.

    • Search Google Scholar
    • Export Citation
  • Archer, D. R., 2003: Contrasting hydrological regimes in the upper Indus basin. J. Hydrol., 274, 198210, doi:10.1016/S0022-1694(02)00414-6.

    • Search Google Scholar
    • Export Citation
  • Archer, D. R., and Fowler H. J. , 2004: Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci., 8, 4761, doi:10.5194/hess-8-47-2004.

    • Search Google Scholar
    • Export Citation
  • Barrand, N. E., and Murray T. , 2006: Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res., 38, 489498, doi:10.1657/1523-0430(2006)38[489:MCOTIO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumann, S., and Winkler S. , 2010: Parameterization of glacier inventory data from Jotunheimen/Norway in comparison to the European Alps and the Southern Alps of New Zealand. Erdkunde, 64, 155177, doi:10.3112/erdkunde.2010.02.04.

    • Search Google Scholar
    • Export Citation
  • Bocchiola, D., and Diolaiuti G. , 2013: Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theor. Appl. Climatol., 113, 611641, doi:10.1007/s00704-012-0803-y.

    • Search Google Scholar
    • Export Citation
  • Bocchiola, D., and Rosso R. , 2009: Use of a derived distribution approach for extreme floods design: A case study in Italy. Adv. Water Resour., 32, 12841296, doi:10.1016/j.advwatres.2009.05.005.

    • Search Google Scholar
    • Export Citation
  • Bocchiola, D., and Coauthors, 2011: Prediction of future hydrological regimes in poorly gauged high altitude basins: The case study of the upper Indus, Pakistan. Hydrol. Earth Syst. Sci., 15, 20592075, doi:10.5194/hess-15-2059-2011.

    • Search Google Scholar
    • Export Citation
  • Bolch, T., Pieczonka T. , and Benn D. I. , 2011: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere,5, 349–358, doi:10.5194/tc-5-349-2011.

  • Bookhagen, B., and Burbank D. W. , 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi:10.1029/2006GL026037.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and Burbank D. W. , 2010: Towards a complete Himalayan hydrologic budget: Spatiotemporal distribution of snow melt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, doi:10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Brock, B. W., Rivera A. , Casassa G. , Bown F. , and Acuña C. , 2007: The surface energy balance of an active ice-covered volcano: Volcán Villarrica, southern Chile. Ann. Glaciol., 45, 104114, doi:10.3189/172756407782282372.

    • Search Google Scholar
    • Export Citation
  • Ceres, F., Chirico G. B. , and Romano N. , 2009: Considerazioni sulla stima della capacità idrica di campo in suoli uniformi e stratificati (Assessment of water contentwithinuniform and stratifiedsoils). Proc. IX Convegno Nazionale dell’Associazione Italiana di Ingegneria Agraria, Ischia Porto, ARB, Memoria 3–44.

  • Chen, J. M., Chen X. , Ju W. , and Geng X. , 2005: Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. J. Hydrol., 305, 1539, doi:10.1016/j.jhydrol.2004.08.029.

    • Search Google Scholar
    • Export Citation
  • Copland, L., Sylvestre T. , Bishop M. P. , Shroder J. F. , Seong Y. B. , Owen L. A. , Bush A. , and Kamp U. , 2011: Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res., 43, 503516, doi:10.1657/1938-4246-43.4.503.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and Paterson W. S. B. , 2010: The Physics of Glaciers. 4th ed. Academic Press, 704 pp.

  • Diolaiuti, G., Pecci M. , and Smiraglia C. , 2003: Liligo glacier, Karakoram, Pakistan: A reconstruction of the recent history of a surge-type glacier. Ann. Glaciol., 36, 168172, doi:10.3189/172756403781816103.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Archer D. R. , 2005: Hydro-climatological variability in the upper Indus basin and implications for water resources. IAHS Publ.,295, 131–138. [Available online at http://iahs.info/uploads/dms/13164.22%20131-138%20(Fowler).pdf.]

  • Gardelle, J., Berthier E. , and Arnaud Y. , 2012: Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci.,5, 322–325, doi:10.1038/ngeo1450.

  • Groppelli, B., Bocchiola D. , and Rosso R. , 2011a: Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy. Water Resour. Res., 47, W03519, doi:10.1029/2010WR009437.

    • Search Google Scholar
    • Export Citation
  • Groppelli, B., Soncini A. , Bocchiola D. , and Rosso R. , 2011b: Evaluation of future hydrological cycle under climate change scenarios in a mesoscale Alpine watershed of Italy. Nat. Hazards Earth Syst. Sci., 11, 17691785, doi:10.5194/nhess-11-1769-2011.

    • Search Google Scholar
    • Export Citation
  • Hannah, D. M., Kansakar S. L. , Gerrard A. J. , and Rees G. , 2005: Flow regimes of Himalayan rivers of Nepal: Nature and spatial patterns. J. Hydrol., 308, 1832, doi:10.1016/j.jhydrol.2004.10.018.

    • Search Google Scholar
    • Export Citation
  • Hewitt, K., 2005: The Karakoram Anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mt. Res. Dev., 25, 332340, doi:10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Droogers P. , de Jong S. M. , and Bierkens M. F. P. , 2009: Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ., 113, 4049, doi:10.1016/j.rse.2008.08.010.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Pellicciotti F. , and Shrestha A. B. , 2012a: Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev., 32, 3038, doi:10.1659/MRD-JOURNAL-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Van Beek L. P. H. , Konz M. , Shrestha A. B. , and Bierkens M. F. P. , 2012b: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, doi:10.1007/s10584-011-0143-4.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Pellicciotti F. , and Bierkens M. F. P. , 2013: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6, 742745, doi:10.1038/ngeo1896.

    • Search Google Scholar
    • Export Citation
  • JPL, cited 2014: ASTER Digital Elevation Model–AST14DEM-Relative. [Available online at http://asterweb.jpl.nasa.gov/content/03_data/01_Data_Products/release_DEM_relative.htm.]

  • Kääb, A., Berthier E. , Nuth C. , Gardelle J. , and Arnaud Y. , 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, doi:10.1038/nature11324.

    • Search Google Scholar
    • Export Citation
  • Kahlown, M. A., Raoof A. , Zubair M. , and Kemper W. D. , 2007: Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus basin of Pakistan. Agric. Water Manage., 87, 292298, doi:10.1016/j.agwat.2006.07.011.

    • Search Google Scholar
    • Export Citation
  • Kaser, G., Großhauser M. , and Marzeion B. , 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci.,107,20 22320 227, doi:10.1073/pnas.1008162107.

  • Kehrwald, N. M., and Coauthors, 2008: Mass loss on Himalayan glacier endangers water resources. Geophys. Res. Lett., 35, L22503, doi:10.1029/2008GL035556.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., Bartelt P. , Brown B. , and Fierz C. , 2002: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol., 35, 169184, doi:10.1016/S0165-232X(02)00072-1.

    • Search Google Scholar
    • Export Citation
  • Mayer, C., Lambrecht A. , Belò M. , Smiraglia C. , and Diolaiuti G. , 2006: Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram. Ann. Glaciol., 43, 123131, doi:10.3189/172756406781812087.

    • Search Google Scholar
    • Export Citation
  • Mayer, C., Fowler A. C. , Lambrecht A. , and Scharrer K. , 2011: A surge of North Gasherbrum glacier, Karakoram, China. J. Glaciol., 57, 904916, doi:10.3189/002214311798043834.

    • Search Google Scholar
    • Export Citation
  • Mihalcea, C., Mayer C. , Diolaiuti G. , Lambrecht A. , Smiraglia C. , and Tartari G. , 2006: Ice ablation and meteorological conditions on the debris covered area of Baltoro glacier (Karakoram, Pakistan). Ann. Glaciol., 43, 292300, doi:10.3189/172756406781812104.

    • Search Google Scholar
    • Export Citation
  • Mihalcea, C., Mayer C. , Diolaiuti G. , D’Agata C. , Smiraglia C. , Lambrecht A. , Vuillermoz E. , and Tartari G. , 2008: Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol., 48, 4957, doi:10.3189/172756408784700680.

    • Search Google Scholar
    • Export Citation
  • Minora, U., and Coauthors, 2013: 2001–2010 glacier changes in the Central Karakoram National Park: A contribution to evaluate the magnitude and rate of the Karakoram anomaly. Cryosphere Discuss.,7, 2891–2941, doi:10.5194/tcd-7-2891-2013.

  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Nicholson, L., and Benn D. , 2006: Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol., 52, 463470, doi:10.3189/172756506781828584.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 2001: Glaciers and Climate Change. A. A. Balkema, 148 pp.

  • Palazzi, E., von Hardenberg J. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Quincey, D. J., Glasser N. F. , Braun M. , Bishop M. P. , Hewitt K. , and Luckman A. , 2011: Karakoram glacier surge dynamics. Geophys. Res. Lett., 38, L18504, doi:10.1029/2011GL049004.

    • Search Google Scholar
    • Export Citation
  • Ragettli, S., Pellicciotti F. , Bordoy R. , and Immerzeel W. W. , 2013: Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res., 49, 60486066, doi:10.1002/wrcr.20450.

    • Search Google Scholar
    • Export Citation
  • Ritter, A., and Muñoz-Carpena R. , 2013: Predictive ability of hydrological models: Objective assessment of goodness-of-fit with statistical significance. J. Hydrol., 480, 3345, doi:10.1016/j.jhydrol.2012.12.004.

    • Search Google Scholar
    • Export Citation
  • Rosso, R., 1984: Nash model relation to Horton order ratios. Water Resour. Res., 20, 914920, doi:10.1029/WR020i007p00914.

  • Scherler, D., Bookhagen B. , and Strecker M. R. , 2011a: Hillslope–glacier coupling: The interplay of topography and glacial dynamics in High Asia. J. Geophys. Res.,116, F02019, doi:10.1029/2010JF001751.

  • Scherler, D., Bookhagen B. , and Strecker M. R. , 2011b: Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci., 4, 156159, doi:10.1038/ngeo1068.

    • Search Google Scholar
    • Export Citation
  • Sharif, M., Archer D. R. , Fowler H. J. , and Forsythe N. , 2013: Trends in timing and magnitude of flow in the upper Indus basin. Hydrol. Earth Syst. Sci., 17, 1503–1516, doi:10.5194/hess-17-1503-2013.

    • Search Google Scholar
    • Export Citation
  • Smakhtin, V. U., 2001: Low flow hydrology: A review. J. Hydrol., 240, 147186, doi:10.1016/S0022-1694(00)00340-1.

  • Smiraglia, C., Mayer C. , Mihalcea C. , Diolaiuti G. , Belò M. , and Vassena G. , 2007: Ongoing variations of Himalayan and Karakoram glaciers as witnesses of global changes: Recent studies of selected glaciers. Dev. Earth Surf. Processes, 10, 235248, doi:10.1016/S0928-2025(06)10026-7.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Chen Z. , Marquis M. , Averyt K. , Tignor M. , and Miller H. L. Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Wallinga, J., and van de Wal R. S. W. , 1998: Sensitivity of Rhonegletscher, Switzerland, to climate change: Experiments with a one-dimensional flowline model. J. Glaciol., 44, 383393.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Koike T. , Yang K. , and Yeh P. J. , 2009: Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River basin. J. Hydrol., 377, 2134, doi:10.1016/j.jhydrol.2009.08.005.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. W. , and Lettenmaier D. P. , 1994: A distributed hydrology–vegetation model for complex terrain. Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.

    • Search Google Scholar
    • Export Citation
  • Winiger, M., Gumpert M. , and Yamout H. , 2005: Karakoram–Hindukush–western Himalaya: Assessing high-altitude water resources. Hydrol. Processes, 19, 23292338, doi:10.1002/hyp.5887.

    • Search Google Scholar
    • Export Citation
  • Young, G. J., and Hewitt K. , 1990: Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. IAHS Publ., 190, 139152. [Available online at http://iahs.info/uploads/dms/iahs_190_0139.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1543 468 22
PDF Downloads 968 215 9