Distributed Hydrologic Modeling Using Satellite-Derived Potential Evapotranspiration

Ryan R. Spies Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Ryan R. Spies in
Current site
Google Scholar
PubMed
Close
,
Kristie J. Franz Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Kristie J. Franz in
Current site
Google Scholar
PubMed
Close
,
Terri S. Hogue Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado

Search for other papers by Terri S. Hogue in
Current site
Google Scholar
PubMed
Close
, and
Angela L. Bowman Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Angela L. Bowman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-derived potential evapotranspiration (PET) estimates computed from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and the Priestley–Taylor formula (M-PET) are evaluated as input to the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). The HL-RDHM is run at a 4-km spatial and 6-h temporal resolution for 13 watersheds in the upper Mississippi and Red River basins for 2003–10. Simulated discharge using inputs of daily M-PET is evaluated for all watersheds, and simulated evapotranspiration (ET) is evaluated at two watersheds using nearby latent heat flux observations. M-PET–derived model simulations are compared to output using the long-term average PET values (default-PET) provided as part of the HL-RDHM application. In addition, uncalibrated and calibrated simulations are evaluated for both PET data sources. Calibrating select model parameters is found to substantially improve simulated discharge for both datasets. Overall average percent bias (PBias) and Nash–Sutcliffe efficiency (NSE) values for simulated discharge are better from the default-PET than the M-PET for the calibrated models during the verification period, indicating that the time-varying M-PET input did not improve the discharge simulation in the HL-RDHM. M-PET tends to produce higher NSE values than the default-PET for the Wisconsin and Minnesota basins, but lower NSE values for the Iowa basins. M-PET–simulated ET matches the range and variability of observed ET better than the default-PET at two sites studied and may provide potential model improvements in that regard.

Corresponding author address: Kristie J. Franz, Geological and Atmospheric Sciences, Iowa State University, 3023 Agronomy Hall, Ames, IA 50011. E-mail: kfranz@iastate.edu

Abstract

Satellite-derived potential evapotranspiration (PET) estimates computed from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and the Priestley–Taylor formula (M-PET) are evaluated as input to the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). The HL-RDHM is run at a 4-km spatial and 6-h temporal resolution for 13 watersheds in the upper Mississippi and Red River basins for 2003–10. Simulated discharge using inputs of daily M-PET is evaluated for all watersheds, and simulated evapotranspiration (ET) is evaluated at two watersheds using nearby latent heat flux observations. M-PET–derived model simulations are compared to output using the long-term average PET values (default-PET) provided as part of the HL-RDHM application. In addition, uncalibrated and calibrated simulations are evaluated for both PET data sources. Calibrating select model parameters is found to substantially improve simulated discharge for both datasets. Overall average percent bias (PBias) and Nash–Sutcliffe efficiency (NSE) values for simulated discharge are better from the default-PET than the M-PET for the calibrated models during the verification period, indicating that the time-varying M-PET input did not improve the discharge simulation in the HL-RDHM. M-PET tends to produce higher NSE values than the default-PET for the Wisconsin and Minnesota basins, but lower NSE values for the Iowa basins. M-PET–simulated ET matches the range and variability of observed ET better than the default-PET at two sites studied and may provide potential model improvements in that regard.

Corresponding author address: Kristie J. Franz, Geological and Atmospheric Sciences, Iowa State University, 3023 Agronomy Hall, Ames, IA 50011. E-mail: kfranz@iastate.edu
Save
  • Anderson, E. A., 1973: National Weather Service River Forecast System–Snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17, 87 pp. [Available online at ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/snow/AndersonHYDRO17.pdf.]

  • Anderson, E. A., 2002: Calibration of conceptual hydrologic models for use in river forecasting. NWS Doc., Office of Hydrologic Development, National Weather Service, Silver Spring, MD, 16 pp. [Available online at www.nws.noaa.gov/oh/hrl/calb/calibration1102/calb_report_contents_etc.pdf.]

  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872886, doi:10.1016/j.advwatres.2005.08.004.

    • Search Google Scholar
    • Export Citation
  • Andréassian, V., Perrin C. , and Michel C. , 2004: Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models. J. Hydrol., 286, 1935, doi:10.1016/j.jhydrol.2003.09.030.

    • Search Google Scholar
    • Export Citation
  • Barik, M., 2014: Remote sensing-based estimates of potential evapotranspiration for hydrologic modeling in the upper Colorado River basin region. Ph.D dissertation, University of California, Los Angeles, 146 pp.

  • Behrangi, A., Khakbaz B. , Jaw T. C. , AghaKouchak A. , Hsu K. L. , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 2001: Rainfall-Runoff Modeling: The Primer. John Wiley & Sons, 360 pp.

  • Bicki, T. J., Fenton T. E. , Luce H. D. , and DeWitt T. A. , 1988: Comparison of percolation test results and estimated hydraulic conductivities for mollisols and alfisols. Soil Sci. Soc. Amer. J., 52, 17081714, doi:10.2136/sssaj1988.03615995005200060037x.

    • Search Google Scholar
    • Export Citation
  • Bisht, G., Venturini V. , Islam S. , and Jiang L. , 2005: Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ., 97, 5267, doi:10.1016/j.rse.2005.03.014.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., 1995: The NWS river forecast system—Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

  • Burnash, R. J. C., Ferral R. L. , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual models for digital computers. Joint Federal and State River Forecast Center, U.S. National Weather Service, and California Department of Water Resources Tech. Rep., 204 pp.

  • Farnsworth, R. K., and Thompson E. S. , 1982: Mean monthly, seasonal, and annual pan evaporation for the United States. NOAA Tech. Rep. NWS 34, 91 pp. [Available online at www.nws.noaa.gov/oh/hdsc/PMP_related_studies/TR34.pdf.]

  • Farnsworth, R. K., Thompson E. S. , and Peck E. L. , 1982: Evaporation atlas for the contiguous 48 United States. NOAA Tech. Rep. NWS 33, 41 pp. [Available online at www.nws.noaa.gov/oh/hdsc/Technical_reports/TR33.pdf.]

  • Fowler, A. M., 2002: Assessment of the validity of using mean potential evaporation in computations of long-term soil water balance. J. Hydrol., 256, 248263, doi:10.1016/S0022-1694(01)00542-X.

    • Search Google Scholar
    • Export Citation
  • Franz, K. J., and Karsten L. R. , 2013: Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160175, doi:10.1016/j.jhydrol.2013.04.026.

    • Search Google Scholar
    • Export Citation
  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sens.,77 (9), 858–864.

  • Fulton, R. A., 1998: WSR-88D polar-to-HRAP mapping. NOAA Tech. Memo., 33 pp. [Available online at www.nws.noaa.gov/oh/hrl/papers/wsr88d/hrapmap.pdf.]

  • Gokmen, M., Vekerdy Z. , Lubczynski M. W. , Timmermans J. , Batelaan O. , and Verhoef W. , 2013: Assessing groundwater storage changes using remote sensing–based evapotranspiration and precipitation at a large semiarid basin scale. J. Hydrometeor., 14, 17331753, doi:10.1175/JHM-D-12-0156.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Sorooshian S. , 1983: Uniqueness and observability of conceptual rainfall–runoff model parameters: The percolation process examined. Water Resour. Res., 19, 269276, doi:10.1029/WR019i001p00269.

    • Search Google Scholar
    • Export Citation
  • Hogue, T., Sorooshian S. , Gupta H. , Holz A. , and Braatz D. , 2000: A multistep automatic calibration scheme for river forecasting models. J. Hydrometeor., 1, 524542, doi:10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV towards CPC gauge-based analysis. J. Hydrometeor., doi:10.1175/JHM-D-11-0140.1, in press.

    • Search Google Scholar
    • Export Citation
  • Irmak, S., Kabenge I. , Skaggs K. E. , and Mutiibwa D. , 2012: Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River basin, central Nebraska–USA. J. Hydrol., 420–421, 228244, doi:10.1016/j.jhydrol.2011.12.006.

    • Search Google Scholar
    • Export Citation
  • Jacobs, J. M., Lowry B. , Choi M. , and Bolster C. H. , 2009: GOES solar radiation for evapotranspiration estimation and streamflow prediction. J. Hydrol. Eng., 14, 293300, doi:10.1061/(ASCE)1084-0699(2009)14:3(293).

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Randerson J. T. , and Goulden M. L. , 2011: Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sens. Environ., 115, 23022319, doi:10.1016/j.rse.2011.04.031.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and Hogue T. S. , 2008: Evaluation of a MODIS-based potential evapotranspiration product at the point scale. J. Hydrometeor., 9, 444460, doi:10.1175/2007JHM902.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and Hogue T. S. , 2013: Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions. J. Appl. Remote Sens., 7, 073493, doi:10.1117/1.JRS.7.073493.

    • Search Google Scholar
    • Export Citation
  • Kirchener, J. W., 2006: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res., 42, W03S04, doi:10.1029/2005WR004362.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Smith M. , Wang D. , and Zhang Z. , 2000: Use of soil property data in the derivation of conceptual rainfall–runoff model parameters. Proc. 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 103106.

  • Koren, V. I., Smith M. , and Duan Q. , 2003: Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall–runoff models. Calibration of Watershed Models, Water Science and Applications, Vol. 6, Amer. Geophys. Union, 239–254, doi:10.1002/9781118665671.ch18.

  • Koren, V. I., Reed S. , Smith M. , Zhang Z. , and Seo D.-J. , 2004: Hydrology laboratory research modeling system (HL-RMS) of the US National Weather Service. J. Hydrol., 291, 297318, doi:10.1016/j.jhydrol.2003.12.039.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Smith M. , Cui Z. , and Cosgrove B. , 2007: Physically-based modifications to the Sacramento Soil Moisture Accounting model: Modeling the effects of frozen ground on the rainfall-runoff process. NOAA Tech. Rep. NWS 52, 43 pp. [Available online at www.nws.noaa.gov/oh/hrl/hsmb/docs/hydrology/PBE_SAC-SMA/NOAA_Technical_Report_NWS_52.pdf.]

  • Koren, V. I., Smith M. , Cui Z. , Cosgrove B. , Warner K. , and Zamora R. , 2010: Modification of Sacramento Soil Moisture Accounting Heat Transfer Component (SAC-HT) for enhanced evapotranspiration. NOAA Tech. Rep. NWS 53, 66 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/New_Scans_June_2011/NOAA_Technical_Report_NWS_53.pdf.]

  • Koren, V. I., Smith M. , and Cui Z. , 2014: Physically-based modifications to the Sacramento Soil Moisture Accounting model. Part A: Modeling the effects of frozen ground on the runoff generation process. J. Hydrol., doi:10.1016/j.jhydrol.2014.03.004, in press.

    • Search Google Scholar
    • Export Citation
  • Kuzmin, V., Seo D.-J. , and Koren V. , 2008: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. J. Hydrol., 353, 109128, doi:10.1016/j.jhydrol.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Q., Peters-Lidard C. D. , Kumar S. , Foster J. L. , Shaw M. , Tian Y. D. , and Fall G. M. , 2013: Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour., 54, 208227, doi:10.1016/j.advwatres.2013.02.005.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • NWS, 2008: Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) user manual V. 2.4.3. Office of Hydrologic Development, National Weather Service, Silver Spring, MD, 108 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/zc/RDHM_User_Manual.pdf.]

  • NWS, 2011: Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) user manual V. 3.2.0. Office of Hydrologic Development, National Weather Service, Silver Spring, MD, 130 pp.

  • Oudin, L., Michel C. , and Anctil F. , 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 1—Can rainfall–runoff models effectively handle detailed potential evapotranspiration inputs? J. Hydrol., 303, 275289, doi:10.1016/j.jhydrol.2004.08.025.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., and Blöschl G. , 2008: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240258, doi:10.1016/j.jhydrol.2008.06.006.

    • Search Google Scholar
    • Export Citation
  • Pechlivanidis, I. G., Jackson B. M. , Mcintyre N. R. , and Wheater H. S. , 2011: Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST J., 13 (3), 193214.

    • Search Google Scholar
    • Export Citation
  • Reed, S. M., 2003: Deriving flow directions for coarse-resolution (1–4 km) gridded hydrologic modeling. Water Resour. Res., 39, 1238, doi:10.1029/2003WR001989.

    • Search Google Scholar
    • Export Citation
  • Reed, S. M., Koren V. , Smith M. , Zhang Z. , Moreda F. , Seo D.-J. , and DMIP Participants, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760, doi:10.1016/j.jhydrol.2004.03.031.

    • Search Google Scholar
    • Export Citation
  • Robinson, M., and Rycroft D. W. , 1999: The impact of drainage on streamflow. Agricultural Drainage, Agron. Monogr., No. 38. ASA/CSSA/SSSA, 767–800.

    • Search Google Scholar
    • Export Citation
  • Schilling, K. E., and Libra R. D. , 2004: Increased baseflow in Iowa over the second half of the 20th century. J. Amer. Water Resour. Assoc., 39, 851860, doi:10.1111/j.1752-1688.2003.tb04410.x.

    • Search Google Scholar
    • Export Citation
  • Schilling, K. E., and Helmers M. , 2008: Effects of subsurface drainage tiles on streamflow in Iowa agricultural watersheds: Exploratory hydrograph analysis. Hydrol. Processes, 22, 44974506, doi:10.1002/hyp.7052.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Clark M. P. , 2006: Snow assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, doi:10.1175/JHM505.1.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., Koren V. I. , Zhang Z. , Reed S. M. , Pan J.-J. , and Moreda F. , 2004: Runoff response to spatial variability in precipitation: An analysis of observed data. J. Hydrol., 298, 267286, doi:10.1016/j.jhydrol.2004.03.039.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012a: Results of the DMIP 2 Oklahoma experiments. J. Hydrol., 418–419, 1748, doi:10.1016/j.jhydrol.2011.08.056.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., and Coauthors, 2012b: The distributed model intercomparison project—Phase 2: Motivation and design of the Oklahoma experiments. J. Hydrol., 418–419, 316, doi:10.1016/j.jhydrol.2011.08.055.

    • Search Google Scholar
    • Export Citation
  • Şorman, A. A., Sensoy A. , Tekeli A. E. , Sorman A. U. , and Akyurek Z. , 2009: Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrol. Processes, 23, 10311040, doi:10.1002/hyp.7204.

    • Search Google Scholar
    • Export Citation
  • Spies, R., 2013: Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling in Midwestern basins. M.S. thesis, Dept. of Geological and Atmospheric Sciences, Iowa State University, 109 pp. [Available online at http://lib.dr.iastate.edu/etd/13403/.]

  • Steffens, K., and Franz K. J. , 2012: Late 20th-century trends in Iowa watersheds: An investigation of observed and modelled hydrologic storages and fluxes in heavily managed landscapes. Int. J. Climatol., 32, 13731391, doi:10.1002/joc.2361.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., and Lettenmaier D. P. , 2010: Use of satellite snow-cover data for streamflow prediction in the Feather River basin, California. Int. J. Remote Sens., 31, 37453762, doi:10.1080/01431161.2010.483493.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , Van Werkhoven K. , and Wagener T. , 2007: Advancing the identification and evaluation of distributed rainfall–runoff models using global sensitivity analysis. Water Resour. Res., 43, W06415, doi:10.1029/2006WR005813.

    • Search Google Scholar
    • Export Citation
  • Thirel, G., Salamon P. , Burek P. , and Kalas M. , 2013: Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens., 5, 58255850, doi:10.3390/rs5115825.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., van Werkhoven K. , Reed P. , and Tang Y. , 2009: Multiobjective sensitivity analysis to understand the information content in streamflow observations for distributed watershed modeling. Water Resour. Res., 45, W02501, doi:10.1029/2008WR007347.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., Zhang Y. , Zhang Q. , and Li Z. , 2002: Validation of the land surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83, 163180, doi:10.1016/S0034-4257(02)00093-7.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Xue, X. W., Hong Y. , Limaye A. S. , Gourley J. J. , Huffman G. J. , Khan S. I. , Dorji C. , and Chen S. , 2013: Statistical and hydrological evaluation of TRMM-based Multi-Satellite Precipitation Analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 9199, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Yapo, P., Gupta H. V. , and Sorooshian S. , 1996: Calibration of conceptual rainfall–runoff models: Sensitivity to calibration data. J. Hydrol., 181, 2348, doi:10.1016/0022-1694(95)02918-4.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Gupta H. V. , and Wagener T. , 2008: A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res., 44, W09417, doi:10.1029/2007WR006716.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 108 7
PDF Downloads 293 79 6