Impact of Varying Storm Intensity and Consecutive Dry Days on Grassland Soil Moisture

John D. Hottenstein University of Arizona, Tucson, Arizona

Search for other papers by John D. Hottenstein in
Current site
Google Scholar
PubMed
Close
,
Guillermo E. Ponce-Campos Southwest Watershed Research Center, Agricultural Research Service, USDA, and Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona

Search for other papers by Guillermo E. Ponce-Campos in
Current site
Google Scholar
PubMed
Close
,
Julio Moguel-Yanes Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico

Search for other papers by Julio Moguel-Yanes in
Current site
Google Scholar
PubMed
Close
, and
M. Susan Moran Southwest Watershed Research Center, Agricultural Research Service, USDA, Tucson, Arizona

Search for other papers by M. Susan Moran in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intra-annual precipitation patterns are expected to shift toward more intense storms and longer dry periods because of changes in climate within future decades. Using satellite-derived estimates of plant growth combined with in situ measurements of precipitation and soil moisture between 1999 and 2013, this study quantified the relationship between intra-annual precipitation patterns, annual average soil moisture (at 5-cm depth), and plant growth at nine grassland sites across the southern United States. Results showed a fundamental difference in the response to varying precipitation patterns between mesic and semiarid grasslands. Surface soil moisture in mesic grasslands decreased with an increase of high-intensity storms, whereas in semiarid grasslands, soil moisture decreased with longer dry periods. For these sites, annual average soil moisture was a better indicator of grassland production than total annual precipitation. This improved ability to predict variability in soil moisture and plant growth with changing hydroclimatic conditions will result in more efficient resource management and better-informed policy decisions.

Corresponding author address: M. Susan Moran, USDA–ARS, Southwest Watershed Research Center, 2000 E. Allen Rd., Tucson, AZ 85719. E-mail: susan.moran@ars.usda.gov

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Abstract

Intra-annual precipitation patterns are expected to shift toward more intense storms and longer dry periods because of changes in climate within future decades. Using satellite-derived estimates of plant growth combined with in situ measurements of precipitation and soil moisture between 1999 and 2013, this study quantified the relationship between intra-annual precipitation patterns, annual average soil moisture (at 5-cm depth), and plant growth at nine grassland sites across the southern United States. Results showed a fundamental difference in the response to varying precipitation patterns between mesic and semiarid grasslands. Surface soil moisture in mesic grasslands decreased with an increase of high-intensity storms, whereas in semiarid grasslands, soil moisture decreased with longer dry periods. For these sites, annual average soil moisture was a better indicator of grassland production than total annual precipitation. This improved ability to predict variability in soil moisture and plant growth with changing hydroclimatic conditions will result in more efficient resource management and better-informed policy decisions.

Corresponding author address: M. Susan Moran, USDA–ARS, Southwest Watershed Research Center, 2000 E. Allen Rd., Tucson, AZ 85719. E-mail: susan.moran@ars.usda.gov

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Save
  • Baldocchi, D. D., Xu L. , and Kiang N. , 2004: How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agric. For. Meteor., 123, 13–39, doi:10.1016/j.agrformet.2003.11.006.

    • Search Google Scholar
    • Export Citation
  • Barre, H. M. J., Duesmann B. , and Kerr Y. H. , 2008: SMOS: The mission and the system. IEEE Trans. Geosci. Remote Sens.,46, 587–593, doi:10.1109/TGRS.2008.916264.

  • Cherwin, K., and Knapp A. , 2012: Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845–852, doi:10.1007/s00442-011-2235-2.

    • Search Google Scholar
    • Export Citation
  • Cox, J. R., Frasier G. W. , and Renard K. G. , 1986: Biomass distribution at grassland and shrubland sites. Rangelands, 8, 67–68.

  • Delta-T Devices, cited 2014: ML3 ThetaProbe research data sheet. [Available online at www.delta-t.co.uk/product-support-material.asp.]

  • Dore, M. H. I., 2005: Climate change and changes in global precipitation patterns: What do we know? Environ. Int., 31, 1167–1181, doi:10.1016/j.envint.2005.03.004.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J.,12, doi:10.2136/vzj2012.0097.

  • Easterling, D. R., Meehl G. A. , Parmesan C. , Changnon S. A. , Karl T. R. , and Mearns L. O. , 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074, doi:10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and Holtslag A. A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 86–99, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Rodriguez-Iturbe I. , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184, 3–17, doi:10.1016/0022-1694(95)02965-6.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE, 98, 704–716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Fay, P. A., Kaufman D. M. , Nippert J. B. , Carlisle J. D. , and Harper C. W. , 2008: Changes in grassland ecosystem function due to extreme rainfall events: Implications for responses to climate change. Global Change Biol., 14, 1600–1608, doi:10.1111/j.1365-2486.2008.01605.x.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003: Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects. J. Geophys. Res.,108, 8385, doi:10.1029/2001JD001515.

  • Frich, P., Alexander L. V. , DellaMarta P. , Gleason B. , Haylock M. , Tank A. M. G. K. , and Peterson T. , 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193–212, doi:10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Geng, Y., and Coauthors, 2012: Soil respiration in Tibetan Alpine grasslands: Belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One, 7, e34968, doi:10.1371/journal.pone.0034968.

    • Search Google Scholar
    • Export Citation
  • He, Z., Zhao W. , Liu H. , and Chang X. , 2012: The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains. J. Hydrol., 420–421, 183–190, doi:10.1016/j.jhydrol.2011.11.056.

    • Search Google Scholar
    • Export Citation
  • Heisler-White, J. L., Knapp A. K. , and Kelly E. F. , 2008: Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129–140, doi:10.1007/s00442-008-1116-9.

    • Search Google Scholar
    • Export Citation
  • Heisler-White, J. L., Blair J. M. , Kelly E. F. , Harmoney K. , and Knapp A. K. , 2009: Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol., 15, 2894–2904, doi:10.1111/j.1365-2486.2009.01961.x.

    • Search Google Scholar
    • Export Citation
  • Huete, A., Didan K. , Miura T. , Rodriguez E. P. , Gao X. , and Ferreira L. G. , 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195–213, doi:10.1016/S0034-4257(02)00096-2.

    • Search Google Scholar
    • Export Citation
  • Jankju, M., 2008: Individual performances and the interaction between arid land plants affected by the growth season water pulses. Arid Land Res. Manage., 22, 123–133, doi:10.1080/15324980801957986.

    • Search Google Scholar
    • Export Citation
  • Jönsson, P., and Eklundh L. , 2004: TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci., 30, 833–845, doi:10.1016/j.cageo.2004.05.006.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., Waldteufel P. , Wigneron J.-P. , Martinuzzi J. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 1729–1735, doi:10.1109/36.942551.

    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., and Smith M. D. , 2001: Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481–484, doi:10.1126/science.291.5503.481.

    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., and Coauthors, 2002: Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202–2205, doi:10.1126/science.1076347.

    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., and Coauthors, 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58, 811–821, doi:10.1641/B580908.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., Mahmood R. , Levia D. F. , DeLiberty T. L. , Quiring S. M. , Houser C. , and Nelson F. E. , 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr., 35, 65–86, doi:10.1177/0309133310386514.

    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., 2010: Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA, 107, 21 256–21 262, doi:10.1073/pnas.0909651107.

    • Search Google Scholar
    • Export Citation
  • Moran, M. S., and Coauthors, 2014: Change in the function of U.S. grasslands in response to the early 21st century drought. Ecology, 95, 2121–2133, doi:10.1890/13-1687.1.

    • Search Google Scholar
    • Export Citation
  • NRCS, cited 2014: Web Soil Survey. [Available online at http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.]

  • Ponce-Campos, G. E., and Coauthors, 2013: Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349–352, doi:10.1038/nature11836.

    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., Fisher D. K. , Elliott R. L. , Brown G. O. , and Bahrmann C. P. , 2003: Spatiotemporal variations in soil water: First results from the ARM SGP CART network. J. Hydrometeor., 4, 106–120, doi:10.1175/1525-7541(2003)004<0106:SVISWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seyfried, M. S., Grant L. E. , Du E. , and Humes K. , 2005: Dielectric loss and calibration of the hydra probe soil water sensor. Vadose Zone J., 4, 1070, doi:10.2136/vzj2004.0148.

    • Search Google Scholar
    • Export Citation
  • Shaw, M. R., Zavaleta E. S. , Chiariello N. R. , Cleland E. E. , Mooney H. A. , and Field C. B. , 2002: Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987–1990, doi:10.1126/science.1075312.

    • Search Google Scholar
    • Export Citation
  • Suttle, K. B., Thomsen M. A. , and Power M. E. , 2007: Species interactions reverse grassland responses to changing climate. Science, 315, 640–642, doi:10.1126/science.1136401.

    • Search Google Scholar
    • Export Citation
  • Wu, C., and Coauthors, 2012: An underestimated role of precipitation frequency in regulating summer soil moisture. Environ. Res. Lett., 7, 024011, doi:10.1088/1748-9326/7/2/024011.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2013: Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci., 118, 148–157, doi:10.1029/2012JG002136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 756 176 16
PDF Downloads 283 97 3