Using Temporal Changes in Drought Indices to Generate Probabilistic Drought Intensification Forecasts

Jason A. Otkin Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Martha C. Anderson Hydrology and Remote Sensing Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Beltsville, Maryland

Search for other papers by Martha C. Anderson in
Current site
Google Scholar
PubMed
Close
,
Christopher Hain Earth System Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Christopher Hain in
Current site
Google Scholar
PubMed
Close
, and
Mark Svoboda National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Mark Svoboda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the potential utility of using rapid temporal changes in drought indices to provide early warning of an elevated risk for drought development over subseasonal time scales is assessed. Standardized change anomalies were computed each week during the 2000–13 growing seasons for drought indices depicting anomalies in evapotranspiration, precipitation, and soil moisture. A rapid change index (RCI) that encapsulates the accumulated magnitude of rapid changes in the weekly anomalies was computed each week for each drought index, and then a simple statistical method was used to convert the RCI values into drought intensification probabilities depicting the likelihood that drought severity as analyzed by the U.S. Drought Monitor (USDM) would worsen in subsequent weeks. Local and regional case study analyses revealed that elevated drought intensification probabilities often occur several weeks prior to changes in the USDM and in topsoil moisture and crop condition datasets compiled by the National Agricultural Statistics Service. Statistical analyses showed that the RCI-derived probabilities are most reliable and skillful over the central and eastern United States in regions most susceptible to rapid drought development. Taken together, these results suggest that tools used to identify areas experiencing rapid changes in drought indices may be useful components of future drought early warning systems.

Corresponding author address: Jason A. Otkin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: jason.otkin@ssec.wisc.edu

Abstract

In this study, the potential utility of using rapid temporal changes in drought indices to provide early warning of an elevated risk for drought development over subseasonal time scales is assessed. Standardized change anomalies were computed each week during the 2000–13 growing seasons for drought indices depicting anomalies in evapotranspiration, precipitation, and soil moisture. A rapid change index (RCI) that encapsulates the accumulated magnitude of rapid changes in the weekly anomalies was computed each week for each drought index, and then a simple statistical method was used to convert the RCI values into drought intensification probabilities depicting the likelihood that drought severity as analyzed by the U.S. Drought Monitor (USDM) would worsen in subsequent weeks. Local and regional case study analyses revealed that elevated drought intensification probabilities often occur several weeks prior to changes in the USDM and in topsoil moisture and crop condition datasets compiled by the National Agricultural Statistics Service. Statistical analyses showed that the RCI-derived probabilities are most reliable and skillful over the central and eastern United States in regions most susceptible to rapid drought development. Taken together, these results suggest that tools used to identify areas experiencing rapid changes in drought indices may be useful components of future drought early warning systems.

Corresponding author address: Jason A. Otkin, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: jason.otkin@ssec.wisc.edu
Save
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Anderson, M. C., Norman J. M. , Diak G. R. , Kustas W. P. , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, doi:10.1016/S0034-4257(96)00215-5.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Kustas W. P. , and Norman J. M. , 2007a: Upscaling flux observations from local to continental scales using thermal remote sensing. Agron. J., 99, 240254, doi:10.2134/agronj2005.0096S.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007b: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007c: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112, D11112, doi:10.1029/2006JD007507.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Hain C. , Wardlow B. , Pimstein A. , Mecikalski J. R. , and Kustas W. P. , 2011: Evaluation of drought indices based on thermal remote sensing and evapotranspiration over the continental United States. J. Climate, 24, 20252044, doi:10.1175/2010JCLI3812.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Hain C. , Otkin J. A. , Zhan X. , Mo K. , Svoboda M. , Wardlow B. , and Pimstein A. , 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS simulations. J. Hydrometeor., 14, 10351056, doi:10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Aon Benfield, 2013: Annual global climate and catastrophe report: Impact forecasting—2012. Impact Forecasting Rep., 96 pp. [Available online at http://thoughtleadership.aonbenfield.com/Documents/20130124_if_annual_global_climate_catastrophe_report.pdf.]

  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Barnabás, B., Jäger K. , and Fehér A. , 2008: The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ., 31, 1138, doi:10.1111/j.1365-3040.2007.01727.x.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Bowden G. J. , 2008: Toward long-lead operational forecasts of drought: An experimental study in the Murray–Darling River basin. J. Hydrol., 357, 349367, doi:10.1016/j.jhydrol.2008.05.026.

    • Search Google Scholar
    • Export Citation
  • Bell, V. A., Davies H. N. , Kay A. L. , Marsh T. J. , Brookshaw A. , and Jenkins A. , 2013: Developing a large-scale water-balance approach to seasonal forecasting: Application to the 2012 drought in Britain. Hydrol. Processes, 27, 30033012, doi:10.1002/hyp.9863.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Lettenmaier D. P. , 2010: Modeling the effects of lakes and wetlands on the water balance of Arctic environments. J. Hydrometeor., 11, 276295, doi:10.1175/2009JHM1084.1.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by heat and drought in 2003. Nature, 437, 529533, doi:10.1038/nature03972.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Magnusson L. , Wetterhall F. , Cloke H. L. , Balsamo G. , Bousetta S. , and Pappenberger F. , 2013: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol., 33, 17201729, doi:10.1002/joc.3545.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Dirmeyer P. A. , 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, doi:10.1175/JHM-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

  • Hoerling, M., and Kumar A. , 2003: The perfect ocean for drought. Science, 299, 691694, doi:10.1126/science.1079053.

  • Hoerling, M., Eischeid J. , Kumar A. , Leung R. , Mariotti A. , Mo K. , Schubert S. , and Seager R. , 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, E., Svoboda M. , Wardlow B. , Hubbard K. , Hayes M. J. , and Arkebauer T. , 2014: Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. J. Agric. For. Meteor., 191, 111, doi:10.1016/j.agrformet.2014.02.001.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y., and Carbone G. , 2009: Ensemble forecasts of drought indices using a conditional resampling technique. J. Appl. Meteor., 48, 12891301, doi:10.1175/2009JAMC2071.1.

    • Search Google Scholar
    • Export Citation
  • Kebede, H., Fisher D. K. , and Young L. D. , 2012: Determination of moisture deficit and heat stress tolerance in corn using physiological measurements and a low-cost microcontroller-based monitoring system. J. Agron. Crop Sci., 198, 118129, doi:10.1111/j.1439-037X.2011.00493.x.

    • Search Google Scholar
    • Export Citation
  • Kim, T. W., Valdes J. B. , and Yoo C. , 2003: Nonparametric approach for estimating return periods of droughts in arid regions. J. Hydrol. Eng., 8, 237246, doi:10.1061/(ASCE)1084-0699(2003)8:5(237).

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1994: The components of a SVAT scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 6178, doi:10.1016/0309-1708(94)90024-8.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the Mosaic LSM. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA Tech. Memo. TM-104606, Vol. 9, 76 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Kumar, A., and Hoerling M. P. , 1997: Interpretation and implications of the observed inter-El Niño variability. J. Climate, 10, 8391, doi:10.1175/1520-0442(1997)010<0083:IAIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Chen M. , Hoerling M. , and Eischeid J. , 2013: Do extreme climate events require extreme forcings? Geophys. Res. Lett., 40, 34403445, doi:10.1002/grl.50657.

    • Search Google Scholar
    • Export Citation
  • Li, Y. P., Ye W. , Wang M. , and Yan X. D. , 2009: Climate change and drought: A risk assessment of crop-yield impacts. Climate Res., 39, 3146, doi:10.3354/cr00797.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface and soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Loaiciga, H. A., and Leipnik R. B. , 1996: Stochastic renewal model of low-flow streamflow sequences. Stoch. Hydrol. Hydraul., 10, 6585, doi:10.1007/BF01581794.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Wood E. F. , 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884, doi:10.1175/2008JHM980.1.

    • Search Google Scholar
    • Export Citation
  • Luo, L., Wood E. F. , and Pan M. , 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., Bell M. A. , Tippett M. K. , Kumar A. , Hoerling M. P. , Quan X.-W. , and Wang H. , 2012: Baseline probabilities for the seasonal prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12221237, doi:10.1175/JAMC-D-11-0132.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104, 942952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., Doesken N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration to time scale. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

  • McKee, T. B., Doesken N. J. , and Kleist J. , 1995: Drought monitoring with multiple time scales. Proc. Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233236.

  • McNaughton, K. G., and Spriggs T. W. , 1986: A mixed-layer model for regional evaporation. Bound.-Layer Meteor., 34, 243262, doi:10.1007/BF00122381.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mishra, V. R., and Desai A. K. , 2005: Drought forecasting using stochastic models. Stochastic Environ. Res. Risk Assess., 19, 326339, doi:10.1007/s00477-005-0238-4.

    • Search Google Scholar
    • Export Citation
  • Mishra, V. R., and Desai A. K. , 2006: Drought forecasting using feed-forward recursive neural network. Ecol. Modell., 198, 127138, doi:10.1016/j.ecolmodel.2006.04.017.

    • Search Google Scholar
    • Export Citation
  • Mishra, V. R., and Cherkauer K. , 2010: Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteor., 150, 10301045, doi:10.1016/j.agrformet.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Mittler, R., 2006: Abiotic stress, the field environment and stress combination. Trends Plant Sci., 11, 1519, doi:10.1016/j.tplants.2005.11.002.

    • Search Google Scholar
    • Export Citation
  • Mozny, M., Trnka M. , Zalud Z. , Hlavinka P. , Nekovar J. , Potop V. , and Virag M. , 2012: Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol., 107, 99111, doi:10.1007/s00704-011-0460-6.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed by PAR from year of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , and Humes K. S. , 1995: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263292, doi:10.1016/0168-1923(95)02265-Y.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Mecikalski J. R. , and Diak G. R. , 2005: Validation of GOES-based insolation estimates using data from the United States Climate Reference Network. J. Hydrometeor., 6, 460475, doi:10.1175/JHM440.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Hain C. , Mladenova I. , Basara J. , and Svoboda M. , 2013: Examining flash drought development using the thermal infrared–based evaporative stress index. J. Hydrometeor., 14, 10571074, doi:10.1175/JHM-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Hain C. , and Svoboda M. , 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, doi:10.1175/JHM-D-13-0110.1.

    • Search Google Scholar
    • Export Citation
  • Özger, M., Mishra A. K. , and Singh V. P. , 2012: Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydrometeor., 13, 284297, doi:10.1175/JHM-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Yuan X. , and Wood E. F. , 2013: A probabilistic framework for assessing drought recovery. Geophys. Res. Lett., 40, 36373642, doi:10.1002/grl.50728.

    • Search Google Scholar
    • Export Citation
  • Pozzi, W., and Coauthors, 2013: Toward global drought early warning capability. Bull. Amer. Meteor. Soc., 94, 776785, doi:10.1175/BAMS-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Pradhan, G. P., Prasad P. V. V. , Fritz A. K. , Kirkham M. B. , and Gill B. S. , 2012: Response of Aegilops species to drought stress during reproductive stages of development. Funct. Plant Biol., 39, 5159, doi:10.1071/FP11171.

    • Search Google Scholar
    • Export Citation
  • Prasad, P. V. V., Pisipati S. R. , Momcilivic I. , and Ristic Z. , 2011: Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci., 197, 430441, doi:10.1111/j.1439-037X.2011.00477.x.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., Hoerling M. P. , Lyon B. , Kumar A. , Bell M. A. , Tippett M. K. , and Wang H. , 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Rötter, R., and van de Geijn S. C. , 1999: Climate change effects on plant growth, crop yield, and livestock. Climatic Change, 43, 651681, doi:10.1023/A:1005541132734.

    • Search Google Scholar
    • Export Citation
  • Saini, H. S., and Westgate M. E. , 1999: Reproductive development in grain crops during drought. Adv. Agron., 68, 5996, doi:10.1016/S0065-2113(08)60843-3.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Suarez M. J. , Pegion P. J. , Koster R. D. , and Bacmeister J. T. , 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Koster R. , Hoerling M. , Seager R. , Lettenmaier D. , Kumar A. , and Gutzler D. , 2007: Predicting drought on seasonal-to-decadal time scales. Bull. Amer. Meteor. Soc., 88, 16251630, doi:10.1175/BAMS-88-10-1625.

    • Search Google Scholar
    • Export Citation
  • Sen, Z., and Boken V. K. , 2005: Techniques to predict agricultural droughts. Monitoring and Predicting Agricultural Drought, V. K. Boken, A. P. Cracknell, and R. L. Heathcote, Eds., Oxford University Press, 40–54.

  • Steinemann, A., 2003: Drought indicators and triggers: A stochastic approach to evaluation. J. Amer. Water Resour. Assoc., 39, 12171233, doi:10.1111/j.1752-1688.2003.tb03704.x.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Swain, S., Wardlow B. D. , Narumalani S. , Tadesse T. , and Callahan K. , 2011: Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index. GISci. Remote Sens., 48, 432455, doi:10.2747/1548-1603.48.3.432.

    • Search Google Scholar
    • Export Citation
  • USDA, 2013: Crop production: 2012 summary. USDA Rep., 95 pp. [Available online at http://usda01.library.cornell.edu/usda/nass/CropProdSu/2010s/2013/CropProdSu-01-11-2013.pdf.]

  • Wei, H., Xia Y. , Mitchell K. E. , and Ek M. B. , 2013: Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Processes, 27, 297303, doi:10.1002/hyp.9214.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic, 676 pp.

  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenmaier D. P. , 2002: Long range experimental hydrologic forecasting for the eastern U.S. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. B. , Wei H. , and Meng J. , 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, doi:10.1002/hyp.8240.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation of the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Sheffield J. , Ek M. B. , Dong J. , Chaney N. , Wei H. , Meng J. , and Wood E. F. , 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, doi:10.1016/j.jhydrol.2014.02.027.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and Wood E. F. , 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Wood E. F. , Chaney N. W. , Sheffield J. , Kam J. , Liang M. , and Guan K. , 2013: Probabilistic seasonal forecasting of African drought by dynamic models. J. Hydrometeor., 14, 17061720, doi:10.1175/JHM-D-13-054.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 962 295 36
PDF Downloads 601 170 20