Changes in Winter Atmospheric Rivers along the North American West Coast in CMIP5 Climate Models

Michael D. Warner Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Michael D. Warner in
Current site
Google Scholar
PubMed
Close
,
Clifford F. Mass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford F. Mass in
Current site
Google Scholar
PubMed
Close
, and
Eric P. Salathé Jr. Science and Technology Program, University of Washington Bothell, Bothell, Washington

Search for other papers by Eric P. Salathé Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most extreme precipitation events that occur along the North American west coast are associated with winter atmospheric river (AR) events. Global climate models have sufficient resolution to simulate synoptic features associated with AR events, such as high values of vertically integrated water vapor transport (IVT) approaching the coast. From phase 5 of the Coupled Model Intercomparison Project (CMIP5), 10 simulations are used to identify changes in ARs impacting the west coast of North America between historical (1970–99) and end-of-century (2070–99) runs, using representative concentration pathway (RCP) 8.5. The most extreme ARs are identified in both time periods by the 99th percentile of IVT days along a north–south transect offshore of the coast. Integrated water vapor (IWV) and IVT are predicted to increase, while lower-tropospheric winds change little. Winter mean precipitation along the west coast increases by 11%–18% [from 4% to 6% (°C)−1], while precipitation on extreme IVT days increases by 15%–39% [from 5% to 19% (°C)−1]. The frequency of IVT days above the historical 99th percentile threshold increases as much as 290% by the end of this century.

Corresponding author address: Michael Warner, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: mdwarner@atmos.washington.edu

Abstract

Most extreme precipitation events that occur along the North American west coast are associated with winter atmospheric river (AR) events. Global climate models have sufficient resolution to simulate synoptic features associated with AR events, such as high values of vertically integrated water vapor transport (IVT) approaching the coast. From phase 5 of the Coupled Model Intercomparison Project (CMIP5), 10 simulations are used to identify changes in ARs impacting the west coast of North America between historical (1970–99) and end-of-century (2070–99) runs, using representative concentration pathway (RCP) 8.5. The most extreme ARs are identified in both time periods by the 99th percentile of IVT days along a north–south transect offshore of the coast. Integrated water vapor (IWV) and IVT are predicted to increase, while lower-tropospheric winds change little. Winter mean precipitation along the west coast increases by 11%–18% [from 4% to 6% (°C)−1], while precipitation on extreme IVT days increases by 15%–39% [from 5% to 19% (°C)−1]. The frequency of IVT days above the historical 99th percentile threshold increases as much as 290% by the end of this century.

Corresponding author address: Michael Warner, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: mdwarner@atmos.washington.edu
Save
  • Allen, M. R., and Ingram W. J. , 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., Michelson S. A. , Neiman P. J. , Ralph F. M. , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and Polvani L. , 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bopp, L., and Coauthors, 2013: Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245, doi:10.5194/bg-10-6225-2013.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Pardoe C. W. , 1973: Structure of low-level jet streams ahead of mid-latitude cold fronts. Quart. J. Roy. Meteor. Soc., 99, 619638, doi:10.1002/qj.49709942204.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Guo Y. , and Xia X. , 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Zhang Z. , Lombardo K. A. , Chang E. , Liu P. , and Zhang M. , 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., Ralph F. M. , and Moore B. J. , 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2004: Fifty-two years of “pineapple express” storms across the west coast of North America. California Energy Commission Doc. CEC-500-2005-004/California Climate Change Center Rep. 2005-003, 15 pp. [Available online at www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF.]

  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., Knight R. W. , Easterling D. R. , Karl T. R. , Hegerl G. C. , and Razuvaev V. N. , 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Fu Q. , 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and Durran D. R. , 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, doi:10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and Gyakum J. R. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 18 January 1986. Wea. Forecasting, 14, 687700, doi:10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Villarini G. , Lloyd-Hughes B. , Brayshaw D. J. , and Wade A. J. , 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett.,8, 034010, doi:10.1088/1748-9326/8/3/034010.

  • Lenderink, G., and van Meijgaard E. , 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett.,5, 025208, doi:10.1088/1748-9326/5/2/025208.

  • Lu, J., Vecchi G. A. , and Reichler T. , 2007: Expansion of the Hadley Cell under global warming. Geophys. Res. Lett.,34, L06805, doi:10.1029/2006GL028443.

  • Mass, C., Skalenakis A. , and Warner M. , 2011: Extreme precipitation over the west coast of North America: Is there a trend? J. Hydrometeor., 12, 310318, doi:10.1175/2010JHM1341.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., Clark M. P. , and Serreze M. C. , 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., Thompson A. H. , and Smith N. R. , 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787798, doi:10.1175/1520-0493(1987)115<0787:MBOTTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683, doi:10.1175/JCLI-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., Neiman P. J. , Ralph F. M. , and Barthold F. E. , 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 12 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and O’Gorman P. A. , 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, doi:10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , White A. B. , Kingsmill D. E. , and Persson P. O. G. , 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, doi:10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 1337–1358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and Schneider T. , 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and Muller C. J. , 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett.,5, 025207, doi:10.1088/1748-9326/5/2/025207.

  • O’Gorman, P. A., Allan R. , Byrne M. , and Previdi M. , 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Pall, P., Allen M. , and Stone D. , 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, doi:10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and Hartmann D. L. , 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Coleman T. , Neiman P. J. , Zamora R. J. , and Dettinger M. D. , 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., Steenburgh W. J. , and Ralph F. M. , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, doi:10.1029/2006GL026882.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and Frierson D. M. W. , 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and O’Gorman P. A. , 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and Stohl A. , 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 2850–2868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Weather and Climate Extremes, T. Karl, N. Nicholls, and A. Ghazi, Eds., Springer, 327–339.

  • Trenberth, K. E., and Guillemot C. J. , 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231, doi:10.1007/s003820050219.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Aiguo D. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Taotao Q. , Aiguo D. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., Collins M. , Arblaster J. , Christensen J. H. , Marotzke J. , Power S. B. , Rummukainen M. , and Zhou T. , Eds., 2013: Annex I: Atlas of global and regional climate projections supplementary material RCP8.5. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, AISM-1–AISM-159. [Available online at www.climatechange2013.org/images/report/WG1AR5_AISM8.5_FINAL.pdf.]

  • Viale, M., and Nunez M. N. , 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, doi:10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., Mass C. F. , and Salathé E. P. , 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, doi:10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., Bretherton C. S. , and Salathe E. P. , 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16, 799816, doi:10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett.,32, L18701, doi:10.1029/2005GL023684.

  • Zappa, G., Shaffrey L. C. , and Hodges K. I. , 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, doi:10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3167 743 63
PDF Downloads 1384 304 19