The Definition and Characteristics of Regional Rainfall Events Demonstrated by Warm Season Precipitation over the Beijing Plain

Rucong Yu State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Rucong Yu in
Current site
Google Scholar
PubMed
Close
,
Haoming Chen Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Haoming Chen in
Current site
Google Scholar
PubMed
Close
, and
Wei Sun State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wei Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a regional rainfall event (RRE) is defined by observed rainfall at multiple, well-distributed stations in a given area. Meanwhile, a regional rainfall coefficient (RRC), which could be used to classify local rain (LR) and regional rain (RR) in the given area, is defined to quantify the spatiotemporal variation of rainfall events. As a key parameter describing the spread of rainfall, RRC, together with duration and intensity, presents an effort to explore more complete spatiotemporal organization and evolution of RREs. Preliminary analyses of RREs over the Beijing plain reveal new, interesting characteristics of rainfall. The RRC of RRE increases with longer duration and stronger intensity. Most of the RREs with maximum peak rainfall intensity below 2 mm h−1 or duration shorter than 3 h have RRC less than 0.4, indicating that these events are not uniformly spread over the region. Thus, they are reasonably classified into LR. RREs with RRC above 0.5 could be classified into RR, which usually lasts longer than 4 h and has primary peak rainfall occurring from 1700 to 0600 LST. For most of the intense long-duration RR, evolutions of RRC and rainfall intensity are not consistent. The RRC reaches a maximum a few hours after the peak intensity was reached. The results of this study enrich the understanding of rainfall processes and provide new insight into understanding and quantifying the space–time characteristics of rainfall. These findings have great potential to further evaluate cloud and precipitation physics as well as their parameterizations in numerical models.

Corresponding author address: Dr. Rucong Yu, China Meteorological Administration, No. 46, Zhongguancun South Street, Beijing 100081, China. E-mail: yrc@cma.gov.cn

Abstract

In this study, a regional rainfall event (RRE) is defined by observed rainfall at multiple, well-distributed stations in a given area. Meanwhile, a regional rainfall coefficient (RRC), which could be used to classify local rain (LR) and regional rain (RR) in the given area, is defined to quantify the spatiotemporal variation of rainfall events. As a key parameter describing the spread of rainfall, RRC, together with duration and intensity, presents an effort to explore more complete spatiotemporal organization and evolution of RREs. Preliminary analyses of RREs over the Beijing plain reveal new, interesting characteristics of rainfall. The RRC of RRE increases with longer duration and stronger intensity. Most of the RREs with maximum peak rainfall intensity below 2 mm h−1 or duration shorter than 3 h have RRC less than 0.4, indicating that these events are not uniformly spread over the region. Thus, they are reasonably classified into LR. RREs with RRC above 0.5 could be classified into RR, which usually lasts longer than 4 h and has primary peak rainfall occurring from 1700 to 0600 LST. For most of the intense long-duration RR, evolutions of RRC and rainfall intensity are not consistent. The RRC reaches a maximum a few hours after the peak intensity was reached. The results of this study enrich the understanding of rainfall processes and provide new insight into understanding and quantifying the space–time characteristics of rainfall. These findings have great potential to further evaluate cloud and precipitation physics as well as their parameterizations in numerical models.

Corresponding author address: Dr. Rucong Yu, China Meteorological Administration, No. 46, Zhongguancun South Street, Beijing 100081, China. E-mail: yrc@cma.gov.cn
Save
  • Alfieri, L., Claps P. , D’Odorico P. , Laio F. , and Over T. M. , 2008: An analysis of the soil moisture feedback on convective and stratiform precipitation. J. Hydrometeor., 9, 280291, doi:10.1175/2007JHM863.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., Beltrán-Przekurat A. B. , and Pielke R. A. , 2009: Spatiotemporal variability of precipitation, modeled soil moisture, and vegetation greenness in North America within the recent observational record. J. Hydrometeor., 10, 13551378, doi:10.1175/2009JHM1123.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., Sha W. , Iwasaki T. , and Ueno K. , 2012: Diurnal variation of rainfall in the Yangtze River valley during the spring–summer transition from TRMM measurements. J. Geophys. Res., 117, D06106, doi:10.1029/2011JD017056.

    • Search Google Scholar
    • Export Citation
  • Chen, G., Sha W. , Sawada M. , and Iwasaki T. , 2013: Influence of summer monsoon diurnal cycle on moisture transport and precipitation over eastern China. J. Geophys. Res. Atmos., 118, 31633177, doi:10.1002/jgrd.50337.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Yu R. , Li J. , Yuan W. , and Zhou T. , 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23, 905917, doi:10.1175/2009JCLI3187.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., and Trenberth K. E. , 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Wu J. , and Chen Y. , 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, doi:10.1175/JCLI-D-11-00422.1.

    • Search Google Scholar
    • Export Citation
  • Faurès, J.-M., Goodrich D. C. , Woolhiser D. A. , and Sorooshian S. , 1995: Impact of small-scale spatial rainfall variability on runoff modeling. J. Hydrol., 173, 309326, doi:10.1016/0022-1694(95)02704-S.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., Dong X. , Xi B. , McFarlane S. A. , Kennedy A. , Lin B. , and Minnis P. , 2012: Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • He, H., and Zhang F. , 2010: Diurnal variations of warm-season precipitation over northern China. Mon. Wea. Rev., 138, 10171025, doi:10.1175/2010MWR3356.1.

    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., and Chan J. C. L. , 2011: Maintenance mechanisms for the early-morning maximum summer rainfall over southeast China. Quart. J. Roy. Meteor. Soc., 137, 959968, doi:10.1002/qj.815.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and Yasunari T. , 2006: Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, doi:10.1175/JCLI3714.1.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and Fritsch J. M. , 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, doi:10.1002/qj.49712353807.

    • Search Google Scholar
    • Export Citation
  • Li, J., Yu R. , and Wang J. , 2008a: Diurnal variations of summer precipitation in Beijing. Chin. Sci. Bull., 53, 1933–1936, doi:10.1007/s11434-008-0195-7.

    • Search Google Scholar
    • Export Citation
  • Li, J., Yu R. , and Zhou T. , 2008b: Seasonal variation of the diurnal cycle of rainfall in the southern contiguous China. J. Climate, 21, 60366043, doi:10.1175/2008JCLI2188.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., Yu R. , Yuan W. , and Chen H. , 2011: Changes in duration-related characteristics of late-summer precipitation over eastern China in the past 40 years. J. Climate, 24, 56835690, doi:10.1175/JCLI-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Meoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, doi:10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGinley, J. A., Albers S. C. , and Stamus P. A. , 1991: Validation of a composite convective index as defined by a real-time local analysis system. Wea. Forecasting, 6, 337356, doi:10.1175/1520-0434(1991)006<0337:VOACCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moron, V., Robertson A. W. , and Qian J.-H. , 2010: Local versus regional-scale characteristics of monsoon onset and post-onset rainfall over Indonesia. Climate Dyn., 34, 281299, doi:10.1007/s00382-009-0547-2.

    • Search Google Scholar
    • Export Citation
  • Moseley, C., Berg P. , and Haerter J. O. , 2013: Probing the precipitation life cycle by iterative rain cell tracking. J. Geophys. Res. Atmos.,118, 13 361–13 370, doi:10.1002/2013JD020868.

  • Obled, Ch., Wendling J. , and Beven K. , 1994: The sensitivity of hydrological models to spatial rainfall patterns: An evaluation using observed data. J. Hydrol., 159, 305333, doi:10.1016/0022-1694(94)90263-1.

    • Search Google Scholar
    • Export Citation
  • Rio, C., Hourdin F. , Grandpeix J. Y. , and Lafore J. P. , 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Sato, T., Miura H. , Satoh M. , Takayabu Y. N. , and Wang Y. Q. , 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Soltani, S., and Modarres R. , 2006: Classification of spatio-temporal pattern of rainfall in Iran using a hierarchical and divisive cluster analysis. J. Spat. Hydrol.,6, 1–12. [Available online at www.spatialhydrology.net/index.php/JOSH/article/viewFile/53/52.]

  • Toews, M. W., Allen D. M. , and Whitfield P. H. , 2009: Recharge sensitivity to local and regional precipitation in semiarid midlatitude regions. Water Resour. Res., 45, W06404, doi:10.1029/2007WR006763.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., Foufoula-Georgiou E. , and Sapozhnikov V. , 1999: Evidence of dynamic scaling in space–time rainfall. J. Geophys. Res., 104, 31 59931 610, doi:10.1029/1999JD900437.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., Chen G. T.-J. , Huang H.-L. , Carbone R. E. , and Chang S.-W. , 2012: Synoptic conditions associated with propagating and nonpropagating cloud/rainfall episodes during the warm season over the East Asian continent. Mon. Wea. Rev., 140, 721747, doi:10.1175/MWR-D-11-00067.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and Zipser E. J. , 2011: Diurnal variations of precipitation, deep convection and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448465, doi:10.1175/2010JCLI3719.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and Slingo J. , 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and Smith E. A. , 2008: Convective–stratiform precipitation variability at seasonal scale from 8 yr of TRMM observations: Implications for multiple modes of diurnal variability. J. Climate, 21, 40874114, doi:10.1175/2008JCLI2096.1.

    • Search Google Scholar
    • Export Citation
  • Yin, S., Li W. , Chen D. , Jeong J.-H. , and Guo W. , 2011: Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv. Atmos. Sci., 28, 725734, doi:10.1007/s00376-010-9240-y.

    • Search Google Scholar
    • Export Citation
  • Yu, R., Xu Y. , Zhou T. , and Li J. , 2007a: Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703, doi:10.1029/2007GL030315.

    • Search Google Scholar
    • Export Citation
  • Yu, R., Zhou T. , Xiong A. , Zhu Y. , and Li J. , 2007b: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Yu, R., Yuan W. , Li J. , and Fu Y. , 2010: Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Climate Dyn., 35, 567576, doi:10.1007/s00382-009-0568-x.

    • Search Google Scholar
    • Export Citation
  • Yu, R., Yuan W. , and Li J. , 2013: The asymmetry of rainfall process. Chin. Sci. Bull.,58, 1850–1856, doi:10.1007/s11434-012-5653-6.

  • Yuan, W., Yu R. , Chen H. , Li J. , and Zhang M. , 2010: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J. Climate, 23, 66846695, doi:10.1175/2010JCLI3805.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., Yu R. , Zhang M. , Lin W. , Chen H. , and Li J. , 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 33073320, doi:10.1175/JCLI-D-11-00288.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., Yu R. , Zhang M. , Lin W. , Li J. , and Fu Y. , 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 31593172, doi:10.1175/JCLI-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., Yu R. , Chen H. , Dai A. , and Pan Y. , 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010, doi:10.1175/2008JCLI2028.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1825 720 36
PDF Downloads 1083 354 26