A Dynamic Approach to Addressing Observation-Minus-Forecast Bias in a Land Surface Skin Temperature Data Assimilation System

Clara Draper Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland

Search for other papers by Clara Draper in
Current site
Google Scholar
PubMed
Close
,
Rolf Reichle Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf Reichle in
Current site
Google Scholar
PubMed
Close
,
Gabrielle De Lannoy Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland

Search for other papers by Gabrielle De Lannoy in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Scarino Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Benjamin Scarino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In land data assimilation, bias in the observation-minus-forecast (OF) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates and an assumption that the OF residuals are stationary. A two-stage observation bias and state estimation filter is presented here, as an alternative to observation rescaling that does not require a long data record or assume stationary OF residuals. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal-scale mean OF difference from the assimilated observations, allowing the assimilation to correct the model for subseasonal-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature Tskin observations into the Catchment land surface model. Global maps of the estimated OF biases are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tskin OF mean differences, for example, the Geostationary Operational Environmental Satellite (GOES)-West OF mean difference at 2100 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tskin observations, the two-stage assimilation reduced the unbiased root-mean-square difference (ubRMSD) of the modeled Tskin by 10% of the open-loop values.

Corresponding author address: Clara Draper, Global Modeling and Assimilation Office, NASA GSFC, Code 610.1, Greenbelt, MD 20771. E-mail: clara.draper@nasa.gov

Abstract

In land data assimilation, bias in the observation-minus-forecast (OF) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates and an assumption that the OF residuals are stationary. A two-stage observation bias and state estimation filter is presented here, as an alternative to observation rescaling that does not require a long data record or assume stationary OF residuals. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal-scale mean OF difference from the assimilated observations, allowing the assimilation to correct the model for subseasonal-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature Tskin observations into the Catchment land surface model. Global maps of the estimated OF biases are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tskin OF mean differences, for example, the Geostationary Operational Environmental Satellite (GOES)-West OF mean difference at 2100 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tskin observations, the two-stage assimilation reduced the unbiased root-mean-square difference (ubRMSD) of the modeled Tskin by 10% of the open-loop values.

Corresponding author address: Clara Draper, Global Modeling and Assimilation Office, NASA GSFC, Code 610.1, Greenbelt, MD 20771. E-mail: clara.draper@nasa.gov
Save
  • Augustine, J., Hodges G. , Cornwall C. , Michalsky J. , and Medina C. , 2005: An update on SURFRAD: The GCOS Surface Radiation Budget Network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, doi:10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., McNally A. , and Dee D. , 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642, doi:10.1002/qj.56.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., Radakovich J. , da Silva A. , Todling R. , and Verter F. , 2007: Skin temperature analysis and bias correction in a coupled land–atmosphere data assimilation system. J. Meteor. Soc. Japan, 85A, 205228, doi:10.2151/jmsj.85A.205.

    • Search Google Scholar
    • Export Citation
  • Chepurin, G., Carton J. , and Dee D. , 2005: Forecast model bias correction in ocean data assimilation. Mon. Wea. Rev., 133, 13281342, doi:10.1175/MWR2920.1.

    • Search Google Scholar
    • Export Citation
  • Crow, W., van den Berg M. , Huffman G. , and Pellarin T. , 2011: Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res.,47, W08521, doi:10.1029/2011WR010576.

  • Crow, W., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, doi:10.1029/2011RG000372.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Da Silva A. , 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295, doi:10.1002/qj.49712454512.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Todling R. , 2000: Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Wea. Rev., 128, 32683282, doi:10.1175/1520-0493(2000)128<3268:DAITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Uppala S. , 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, doi:10.1002/qj.493.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., Reichle R. , Houser P. , Pauwels V. , and Verhoest N. , 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43, W09410, doi:10.1029/2006WR005449.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., Reichle R. , Arsenault K. , Houser P. , Kumar S. , Verhoest N. , and Pauwels V. , 2012: Multiscale assimilation of Advanced Micro- wave Scanning Radiometer EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:10.1029/2011WR010588.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., Drusch M. , Vasiljevic D. , Balsamo G. , Albergel C. , and Isaksen L. , 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 11991213, doi:10.1002/qj.2023.

    • Search Google Scholar
    • Export Citation
  • Dharssi, I., Bovis K. , Macpherson B. , and Jones C. , 2011: Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci., 15, 27292746, doi:10.5194/hess-15-2729-2011.

    • Search Google Scholar
    • Export Citation
  • Draper, C., Mahfouf J.-F. , and Walker J. , 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res.,114, D20104, doi:10.1029/2008JD011650.

  • Draper, C., Reichle R. , De Lannoy G. , and Liu Q. , 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett.,39, L04401, doi:10.1029/2011GL050655.

  • Draper, C., Reichle R. , de Jeu R. , Naeimi V. , Parinussa R. , and Wagner W. , 2013: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ., 137, 288298, doi:10.1016/j.rse.2013.06.013.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. , and Gao H. , 2005: Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys. Res. Lett.,32, L15403, doi:10.1029/2005GL023623.

  • Fertig, E., and Coauthors, 2009: Observation bias correction with an ensemble Kalman filter. Tellus, 61A, 210226, doi:10.1111/j.1600-0870.2008.00378.x.

    • Search Google Scholar
    • Export Citation
  • Friedland, B., 1969: Treatment of bias in recursive filtering. IEEE Trans. Autom. Control, 14, 359367, doi:10.1109/TAC.1969.1099223.

  • Ghent, D., Kaduk J. , Remedios J. , Ardö J. , and Balzter H. , 2010: Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter. J. Geophys. Res.,115, D19112, doi:10.1029/2010JD014392.

  • Harris, B., and Kelly G. , 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127, 14531468, doi:10.1002/qj.49712757418.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C., Rienecker M. , Kurkowski N. , and Adamec D. , 2005: Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction. Nonlinear Processes Geophys., 12, 491503, doi:10.5194/npg-12-491-2005.

    • Search Google Scholar
    • Export Citation
  • Koster, R., Suarez M. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Nguyen L. , Doelling D. , Young D. , Miller W. , and Kratz D. , 2002: Rapid calibration of operational and research meteorological satellite imagers. Part II: Comparison of infrared channels. J. Atmos. Oceanic Technol., 19, 12501266, doi:10.1175/1520-0426(2002)019<1250:RCOOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V., De Lannoy G. , Hendricks Franssen H.-J. , and Vereecken H. , 2013: Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter. Hydrol. Earth Syst. Sci., 17, 34993521, doi:10.5194/hess-17-3499-2013.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4, 12291242, doi:10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett.,31, L19501, doi:10.1029/2004GL020938.

  • Reichle, R., Koster R. , Dong J. , and Berg A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, doi:10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. , Liu P. , Mahanama S. , Njoku E. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res.,112, D09108, doi:10.1029/2006JD008033.

  • Reichle, R., Kumar S. , Mahanama S. , Koster R. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, doi:10.1175/2010JHM1262.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., De Lannoy G. , Forman B. , Draper C. , and Liu Q. , 2014: Connecting satellite observations with water cycle variables through land data assimilation: Examples using the NASA GEOS-5 LDAS. Surv. Geophys., 35, 577606, doi:10.1007/s10712-013-9220-8.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Rep. NASA/TM-20080104606, Vol. 27, 101 pp.

  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Scarino, B., Minnis P. , Palikonda R. , Reichle R. , Morstad D. , Yost C. , Shan B. , and Liu Q. , 2013: Retrieving clear-sky surface skin temperature for numerical weather prediction applications from geostationary satellite data. Remote Sens., 5, 342366, doi:10.3390/rs5010342.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., Drusch M. , and Wagner W. , 2008: Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour., 31, 11011112, doi:10.1016/j.advwatres.2008.04.013.

    • Search Google Scholar
    • Export Citation
  • Slater, A., and Clark M. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, doi:10.1175/JHM505.1.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K., Yu Y. , Rama Varma Raja M. , Tarpley D. , and Goldberg M. , 2008: Diurnal-seasonal and weather-related variations of land surface temperature observed from geostationary satellites. Geophys. Res. Lett.,35, L22708, doi:10.1029/2008gl035759.

  • Wang, A., Barlage M. , Zeng X. , and Draper C. , 2014: Comparison of land skin temperature from a land model, remote sensing, and in-situ measurement. J. Geophys. Res. Atmos., 119, 3093–3106, doi:10.1002/2013JD021026.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Wan Z. , Wang P. , Sparrow M. , Liu J. , Zhou X. , and Haginoya S. , 2005: Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res.,110, D11109, doi:10.1029/2004JD005566.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 408 106 8
PDF Downloads 257 76 13