Connecting NASA Science and Engineering with Earth Science Applications

M. Susan Moran Southwest Watershed Research Center, Agricultural Research Service, USDA, Tucson, Arizona

Search for other papers by M. Susan Moran in
Current site
Google Scholar
PubMed
Close
,
Bradley Doorn Applied Sciences Program, NASA, Washington, DC

Search for other papers by Bradley Doorn in
Current site
Google Scholar
PubMed
Close
,
Vanessa Escobar Sigma Space Corporation, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Vanessa Escobar in
Current site
Google Scholar
PubMed
Close
, and
Molly E. Brown NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Molly E. Brown in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This article reports the efforts of the NASA Applied Sciences Program and NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering in prelaunch planning. The SMAP Early Adopter program supported the prelaunch applied research that comprises the SMAP Special Collection of the Journal of Hydrometeorology. This research, in turn, has resulted in unprecedented prelaunch preparation for SMAP applications and critical feedback to the mission to improve product specifications and distribution for postlaunch applications. These efforts have been a learning experience that should provide direction for upcoming missions and set some context for the next NRC decadal survey.

Corresponding author address: M. Susan Moran, USDA–ARS, Southwest Watershed Research Center, 2000 E. Allen Rd., Tucson, AZ 85719. E-mail: susan.moran@ars.usda.gov

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Abstract

The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This article reports the efforts of the NASA Applied Sciences Program and NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering in prelaunch planning. The SMAP Early Adopter program supported the prelaunch applied research that comprises the SMAP Special Collection of the Journal of Hydrometeorology. This research, in turn, has resulted in unprecedented prelaunch preparation for SMAP applications and critical feedback to the mission to improve product specifications and distribution for postlaunch applications. These efforts have been a learning experience that should provide direction for upcoming missions and set some context for the next NRC decadal survey.

Corresponding author address: M. Susan Moran, USDA–ARS, Southwest Watershed Research Center, 2000 E. Allen Rd., Tucson, AZ 85719. E-mail: susan.moran@ars.usda.gov

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Save
  • Albergel, C., and Coauthors, 2013: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeor., 14, 1259–1277, doi:10.1175/JHM-D-12-0161.1.

    • Search Google Scholar
    • Export Citation
  • Bateni, S. M., Huang C. , Margulis S. , Podest E. , and McDonald K. , 2013: Feasibility of characterizing snowpack and the freeze–thaw state of underlying soil using multifrequency active/passive microwave data. IEEE Trans. Geosci. Remote Sens.,51, 4085–4102, doi:10.1109/TGRS.2012.2229466.

  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 5128–5141, doi:10.1002/2014JD021489.

    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and Escobar V. M. , 2014: Assessment of soil moisture data requirements by the potential SMAP data user community: Review of SMAP mission user community. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 7, 277–283, doi:10.1109/JSTARS.2013.2261473.

    • Search Google Scholar
    • Export Citation
  • Brown, M. E., Escobar V. M. , Moran M. S. , Entekhabi D. , O’Neill P. , Njoku E. , Doorn B. , and Entin J. , 2013: NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users. Bull. Amer. Meteor. Soc., 94, 1125–1127, doi:10.1175/BAMS-D-11-00049.1.

    • Search Google Scholar
    • Export Citation
  • Champagne, C., Davison A. M. , Cherneski P. , L’Heureux J. , and Hadwen T. , 2015: Monitoring agricultural risk in Canada using L-band passive microwave soil moisture from SMOS. J. Hydrometeor., doi:10.1175/JHM-D-14-0039.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Crow W. T. , and Ryu D. , 2014: Dual forcing and state correction via soil moisture assimilation for improved rainfall–runoff modeling. J. Hydrometeor., 15, 1832–1848, doi:10.1175/JHM-D-14-0002.1.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) Mission. Proc. IEEE, 98, 704–716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Frankenstein, S., Scott C. , and Stevens M. , 2015: Ingestion of simulated SMAP L3 soil moisture data into military maneuver planning. J. Hydrometeor., doi:10.1175/JHM-D-14-0032.1, in press.

    • Search Google Scholar
    • Export Citation
  • Hottenstein, J. D., Ponce-Campos G. E. , Yanes J. M. , and Moran M. S. , 2015: Impact of varying storm intensity and consecutive dry days on grassland soil moisture. J. Hydrometeor., doi:10.1175/JHM-D-14-0057.1, in press.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., Das N. , Hansen J. W. , and Njoku E. G. , 2013: Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ., 138, 149–164, doi:10.1016/j.rse.2013.07.018.

    • Search Google Scholar
    • Export Citation
  • Irons, J. R., Dwyer J. L. , and Barsi J. A. , 2012: The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ., 122, 11–21, doi:10.1016/j.rse.2011.08.026.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Walker G. K. , Mahanama S. P. P. , and Reichle R. H. , 2014: Soil moisture initialization error and subgrid variability of precipitation in seasonal streamflow forecasting. J. Hydrometeor., 15, 69–88, doi:10.1175/JHM-D-13-050.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Harrison K. W. , Peters-Lidard C. D. , Santanello J. A. , and Kirschbaum D. , 2014a: Assessing the impact of L-band observations on drought and flood risk estimation: A decision-theoretic approach in an OSSE environment. J. Hydrometeor., 15, 2140–2156, doi:10.1175/JHM-D-13-0204.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014b: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 2446–2469, doi:10.1175/JHM-D-13-0132.1.

    • Search Google Scholar
    • Export Citation
  • Magagi, R., and Coauthors, 2013: Canadian experiment for soil moisture in 2010: Overview and preliminary results. IEEE Trans. Geosci. Remote Sens., 51, 347–363, doi:10.1109/TGRS.2012.2198920.

    • Search Google Scholar
    • Export Citation
  • McNairn, H., and Coauthors, 2015: The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote Sens., 53, 2784–2801, doi:10.1109/TGRS.2014.2364913.

    • Search Google Scholar
    • Export Citation
  • McNally, A., and Coauthors, 2015: Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture. J. Hydrometeor., doi:10.1175/JHM-D-14-0049.1, in press.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., Amor I. V. M. , Das N. N. , Khedun C. P. , Singh V. P. , Sivakumar B. , and Hansen J. W. , 2015: Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought. J. Hydrol., doi:10.1016/j.jhydrol.2014.10.038, in press.

  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Renzullo, L. J., Dijk A. V. , Perraud J.-M. , Collins D. , Henderson B. , Jin H. , Smith A. B. , and McJannet D. L. , 2014: Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment. J. Hydrol., 519, 2747–2762, doi:10.1016/j.jhydrol.2014.08.008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1032 345 18
PDF Downloads 296 108 4