Multiscale Hydrologic Applications of the Latest Satellite Precipitation Products in the Yangtze River Basin using a Distributed Hydrologic Model

Zhe Li State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Zhe Li in
Current site
Google Scholar
PubMed
Close
,
Dawen Yang State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Dawen Yang in
Current site
Google Scholar
PubMed
Close
,
Bing Gao School of Water Resources and Environment, China University of Geosciences, Beijing, China

Search for other papers by Bing Gao in
Current site
Google Scholar
PubMed
Close
,
Yang Jiao State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Yang Jiao in
Current site
Google Scholar
PubMed
Close
,
Yang Hong State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, and Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
, and
Tao Xu Three Gorges Water Cascade Dispatch and Communication Center, Yichang, China

Search for other papers by Tao Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study aims to evaluate three global satellite precipitation products [TMPA 3B42, version 7 (3B42 V7); TMPA 3B42 real time (3B42 RT); and Climate Prediction Center morphing technique (CMORPH)] during 2003–12 for multiscale hydrologic applications—including annual water budgeting, monthly and daily streamflow simulation, and extreme flood modeling—via a distributed hydrological model in the Yangtze River basin. The comparison shows that the 3B42 V7 data generally have a better performance in annual water budgeting and monthly streamflow simulation, but this superiority is not guaranteed for daily simulation, especially for flood monitoring. It is also found that, for annual water budgeting, the positive (negative) bias of the 3B42 RT (CMORPH) estimate is mainly propagated into the simulated runoff, and simulated evapotranspiration tends to be more sensitive to negative bias. Regarding streamflow simulation, both near-real-time products show a region-dependent bias: 3B42 RT tends to overestimate streamflow in the upper Yangtze River, and, in contrast, CMORPH shows serious underestimation in those downstream subbasins while it is able to effectively monitor streamflow into the Three Gorges Reservoir. Using 394 selected flood events, the results indicate that 3B42 RT and CMORPH have competitive performances for near-real-time flood monitoring in the upper Yangtze, but for those downstream subbasins, 3B42 RT seems to perform better than CMORPH. Furthermore, the inability of all satellite products to capture some key features of the July 2012 extreme floods reveals the deficiencies associated with them, which will limit their hydrologic utility in local flood monitoring.

Corresponding author address: Dawen Yang, Room 312, New Hydraulic Engineering Building, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China. E-mail: yangdw@tsinghua.edu.cn

Abstract

The present study aims to evaluate three global satellite precipitation products [TMPA 3B42, version 7 (3B42 V7); TMPA 3B42 real time (3B42 RT); and Climate Prediction Center morphing technique (CMORPH)] during 2003–12 for multiscale hydrologic applications—including annual water budgeting, monthly and daily streamflow simulation, and extreme flood modeling—via a distributed hydrological model in the Yangtze River basin. The comparison shows that the 3B42 V7 data generally have a better performance in annual water budgeting and monthly streamflow simulation, but this superiority is not guaranteed for daily simulation, especially for flood monitoring. It is also found that, for annual water budgeting, the positive (negative) bias of the 3B42 RT (CMORPH) estimate is mainly propagated into the simulated runoff, and simulated evapotranspiration tends to be more sensitive to negative bias. Regarding streamflow simulation, both near-real-time products show a region-dependent bias: 3B42 RT tends to overestimate streamflow in the upper Yangtze River, and, in contrast, CMORPH shows serious underestimation in those downstream subbasins while it is able to effectively monitor streamflow into the Three Gorges Reservoir. Using 394 selected flood events, the results indicate that 3B42 RT and CMORPH have competitive performances for near-real-time flood monitoring in the upper Yangtze, but for those downstream subbasins, 3B42 RT seems to perform better than CMORPH. Furthermore, the inability of all satellite products to capture some key features of the July 2012 extreme floods reveals the deficiencies associated with them, which will limit their hydrologic utility in local flood monitoring.

Corresponding author address: Dawen Yang, Room 312, New Hydraulic Engineering Building, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China. E-mail: yangdw@tsinghua.edu.cn
Save
  • Aragão, L. E. O. C., Malhi Y. , Roman-Cuesta R. M. , Saatchi S. , Anderson L. O. , and Shimabukuro Y. E. , 2007: Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett., 34, L07701, doi:10.1029/2006GL028946.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., and Gebremichael M. , 2011: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res., 47, W06526, doi:10.1029/2010WR009917.

    • Search Google Scholar
    • Export Citation
  • Changjiang Water Resources Commission, 1997: Hydrology Research for Three Gorges Project (in Chinese). Hubei Science and Technology Press, 313 pp.

    • Search Google Scholar
    • Export Citation
  • Changjiang Water Resources Commission, 1999: Atlas of the Changjiang River Basin (in Chinese). SinoMaps Press, 286 pp.

  • Cong, Z. T., Yang D. W. , Gao B. , Yang H. B. , and Hu H. P. , 2009: Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour. Res., 45, W00A13, doi:10.1029/2008WR006852.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and Zhang J. Y. , 2009: Rainstorms and Floods in China (in Chinese). China Meteorological Press, 290 pp.

  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Food and Agricultural Organization, 2003: Digital Soil Map of the World and Derived Soil Properties. Land Water Digital Media Series, Rev. 1, Food and Agriculture Organization, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Gao, B., Yang D. , Zhao T. , and Yang H. , 2012: Changes in the eco-flow metrics of the Upper Yangtze River from 1961 to 2008. J. Hydrol., 448–449, 3038, doi:10.1016/j.jhydrol.2012.03.045.

    • Search Google Scholar
    • Export Citation
  • Gao, G., Chen D. , Xu C.-Y. , and Simelton E. , 2007: Trend of estimated actual evapotranspiration over China during1960–2002. J. Geophys. Res., 112, D11120, doi:10.1029/2006JD008010.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Liu M. , 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, doi:10.5194/hess-17-837-2013.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., Tian Y. , Peters-Lidard C. D. , and Hossain F. , 2012: Tracing hydrologic model simulation error as a function of satellite rainfall estimation bias components and land use and land cover conditions. Water Resour. Res., 48, W11509, doi:10.1029/2011WR011643.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Krajewski W. F. , Morrissey M. , Langerud D. , Huffman G. J. , and Adler R. , 2003: Error uncertainty analysis of GPCP monthly rainfall products: A data-based simulation study. J. Appl. Meteor., 42, 18371848, doi:10.1175/1520-0450(2003)042<1837:EUAOGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., Viarre J. , Quantin G. , and Alcoba M. , 2013: Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Quart. J. Roy. Meteor. Soc., 139, 923940, doi:10.1002/qj.2130.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Gao X. , and Sorooshian S. , 2004: Precipitation Estimation from Remotely Sensed Imagery using Artificial Neural Network Cloud Classification System (PERSIANN-CCS). J. Appl. Meteor. Climatol., 43, 18341853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , and Huffman G. J. , 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33, L22402, doi:10.1029/2006GL028010.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., Yang D. , Li Z. , Mishra A. , Wang Y. , and Yang H. , 2014: Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. Int. J. Remote Sens., 35, 12721294, doi:10.1080/01431161.2013.876118.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-Global, multi-year, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., Ren L.-L. , Hong Y. , Yong B. , Yang X. , Yuan F. , and Ma M. , 2012: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol., 452-453, 213225, doi:10.1016/j.jhydrol.2012.05.055.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2009: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational Flood Prediction System in Nzoia basin, Lake Victoria, Africa. Nat. Hazards, 50, 109123, doi:10.1007/s11069-008-9324-5.

    • Search Google Scholar
    • Export Citation
  • Li, M., Yang D. , Chen J. , and Hubbard S. S. , 2012: Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework. Water Resour. Res., 48, W08510, doi:10.1029/2010WR010062.

    • Search Google Scholar
    • Export Citation
  • Li, X. H., Zhang Q. , and Xu C. Y. , 2012: Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake basin. J. Hydrol., 426–427, 2838, doi:10.1016/j.jhydrol.2012.01.013.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Yang D. , and Hong Y. , 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157169, doi:10.1016/j.jhydrol.2013.07.023.

    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., Ed., 1993: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • McCollum, J. R., Krajewski W. F. , Ferraro R. R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41, 10651080, doi:10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of a 1961–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Lettenmaier D. P. , 2004: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys. Res., 109, D02103, doi:10.1029/2003JD003497.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Li H. , and Wood E. , 2010: Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res., 46, W09535, doi:10.1029/2009WR008290.

    • Search Google Scholar
    • Export Citation
  • Ryo, M., Valeriano O. C. S. , Kanae S. , and Ngoc T. D. , 2014: Temporal downscaling of daily gauged precipitation by application of a satellite product for flood simulation in a poorly gauged basin and its evaluation with multiple regression analysis. J. Hydrometeor., 15, 563580, doi:10.1175/JHM-D-13-052.1.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., Xiong A. , Wang Y. , and Xie P. , 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi:10.1029/2009JD012097.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and Coauthors, 2011: Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Amer. Meteor. Soc., 92, 13531357, doi:10.1175/2011BAMS3158.1.

    • Search Google Scholar
    • Export Citation
  • Su, F., Hong Y. , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9, 622640, doi:10.1175/2007JHM944.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, doi:10.1029/2007GL030787.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183, doi:10.1175/2007JHM859.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Tong, K., Su F. , Yang D. , and Hao Z. , 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423437, doi:10.1016/j.jhydrol.2014.07.044.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069, doi:10.1109/TGRS.2004.841627.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Mandapaka P. V. , Krajewski W. F. , and Moore R. J. , 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Krajewski W. F. , and Smith J. A. , 2009: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J. Geophys. Res., 114, D12106, doi:10.1029/2008JD011475.

    • Search Google Scholar
    • Export Citation
  • Wang, X. F., and Zhang S. M. , 2013: Analysis on characteristics and forecasting of “12.7” Flood in upper Yangtze River basin (in Chinese). Yangtze River, 2013 (19), 14.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, doi:10.1029/2010WR010090.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Tian Y. , Huffman G. J. , Li H. , and Wang J. , 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, doi:10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Yang D. , Yi Y. , Lei Z. , Chen J. , and Yang W. , 2008: Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quat. Int., 186, 3242, doi:10.1016/j.quaint.2007.10.014.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and Musiake K. , 2003: A continental scale hydrological model using the distributed approach and its application to Asia. Hydrol. Processes, 17, 28552869, doi:10.1002/hyp.1438.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Hogue T. S. , Hsu K. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517, doi:10.1175/JHM431.1.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Hong Y. , Ren L.-L. , Gourley J. J. , Huffman G. J. , Chen X. , Wang W. , and Khan S. I. , 2012: Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res., 117, D09108, doi:10.1029/2011JD017069.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Liu D. , Gourley J. J. , Tian Y. , Huffman G. J. , Ren L.-L. , and Hong Y. , 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implication to its successor Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00017.1, in press.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., Yu R. , Chen H. , Dai A. , and Pan Y. , 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010, doi:10.1175/2008JCLI2028.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1005 256 17
PDF Downloads 631 155 15