Altitudinal Precipitation Gradients in the Tropics from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar

Alison M. Anders Department of Geology, University of Illinois at Urbana–Champaign, Champaign, Illinois

Search for other papers by Alison M. Anders in
Current site
Google Scholar
PubMed
Close
and
Stephen W. Nesbitt Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Tropical Rainfall Measuring Mission (TRMM) climatology shows variability in surface precipitation rate–elevation relationships across the tropics. Vertical profiles of radar reflectivity and profiles of specific humidity and cross-barrier moisture fluxes during precipitation events from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis reveal four precipitation regimes with distinct precipitation mechanisms: 1) a tropical regime with a broad precipitation maximum at ~1500 m where convection is triggered by orographic lifting; 2) a trade winds regime with a near–sea level precipitation maximum dominated by forced ascent due to prevailing winds and the presence of dry air aloft; 3) a wet monsoon regime with a low-elevation precipitation maximum driven by efficient precipitation generation, large low-level cross-barrier moisture fluxes, and multiple convective modes; and 4) a dry monsoon regime with a high-elevation precipitation maximum reflecting intense convection and stratiform rain with a strong evaporation signature. In general, surface precipitation–elevation relationships across the tropics feature lower-elevation precipitation maxima relative to typical midlatitude regimes.

Corresponding author address: A. Anders, Department of Geology, University of Illinois at Urbana–Champaign, 605 E. Springfield Ave., Champaign, IL 61820. E-mail: amanders@illinois.edu

Abstract

A Tropical Rainfall Measuring Mission (TRMM) climatology shows variability in surface precipitation rate–elevation relationships across the tropics. Vertical profiles of radar reflectivity and profiles of specific humidity and cross-barrier moisture fluxes during precipitation events from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis reveal four precipitation regimes with distinct precipitation mechanisms: 1) a tropical regime with a broad precipitation maximum at ~1500 m where convection is triggered by orographic lifting; 2) a trade winds regime with a near–sea level precipitation maximum dominated by forced ascent due to prevailing winds and the presence of dry air aloft; 3) a wet monsoon regime with a low-elevation precipitation maximum driven by efficient precipitation generation, large low-level cross-barrier moisture fluxes, and multiple convective modes; and 4) a dry monsoon regime with a high-elevation precipitation maximum reflecting intense convection and stratiform rain with a strong evaporation signature. In general, surface precipitation–elevation relationships across the tropics feature lower-elevation precipitation maxima relative to typical midlatitude regimes.

Corresponding author address: A. Anders, Department of Geology, University of Illinois at Urbana–Champaign, 605 E. Springfield Ave., Champaign, IL 61820. E-mail: amanders@illinois.edu
Save
  • Adams, D. K., and Comrie A. C. , 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Hallet B. , Montgomery D. R. , Finnegan N. J. , and Putkonen J. , 2006: Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Amer.,389, 39–53.

  • Anders, A. M., Roe G. H. , Durran D. R. , and Minder J. R. , 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 10681081, doi:10.1175/JHM610.1.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2008: Mountain Weather and Climate.Cambridge University Press, 506 pp.

  • Colberg, J. S., and Anders A. M. , 2014: Numerical modeling of spatially-variable precipitation and passive margin escarpment evolution. Geomorphology, 207, 203212, doi:10.1016/j.geomorph.2013.11.006.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and Webster P. J. , 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, doi:10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., and Nobre C. A. , 1990: Precipitation distribution over central and western tropical South America. Climanalise, 5, 3645.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, doi:10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Chen Q. , Frazier A. G. , Price J. P. , Chen Y.-L. , Chu P.-S. , Eischeid J. K. , and Delparte D. M. , 2013: Online rainfall atlas of Hawai’i. Bull. Amer. Meteor. Soc., 94, 313316, doi:10.1175/BAMS-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Nesbitt S. W. , Yu W. , and Williams S. , 2009: Comparison of gauge-corrected versus non-gauge corrected satellite-based quantitative precipitation estimates during the 2004 NAME Enhanced Observing period. Atmósphera, 22, 6998.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., Krishnamurthy V. , and Annamalai H. , 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, doi:10.1002/qj.49712555412.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., Gebremichael M. , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, doi:10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Nelkin E. J. , and Wolff D. B. , 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1980: Diurnal rainfall variation in Northeast Brazil. Mon. Wea. Rev., 108, 488498, doi:10.1175/1520-0493(1980)108<0488:DRVINB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lauer, W., 1975: Klimatische Grundzüge der Höhenstufung tropischer Gebirge. Tagungsbericht und wissenschaftliche Abhandlungen, Vol. 40, F. Steiner, 76–90.

  • Lauscher, F., 1976: Weltweite Typen der Höhenabhängigkeit des Niederschlags. Wetter Leben,28, 80–90.

  • Nesbitt, S. W., and Anders A. M. , 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission Precipitation Radar. Geophys. Res. Lett., 36, L15815, doi:10.1029/2009GL038026.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Cifelli R. , and Rutledge S. A. , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Gochis D. J. , and Lang T. J. , 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental during the North American Monsoon Experiment: Implications for precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, doi:10.1175/2008JHM939.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millennia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and Barros A. P. , 2010: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 141156, doi:10.1016/j.jhydrol.2010.07.013.

    • Search Google Scholar
    • Export Citation
  • Rao, V. B., De Lima M. C. , and Franchito S. H. , 1993: Seasonal and interannual variations of rainfall over eastern northeast Brazil. J. Climate, 6, 17541763, doi:10.1175/1520-0442(1993)006<1754:SAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic Precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Sawyer, J. S., 1956: The physical and dynamical problems of orographic rain. Weather, 11, 375381, doi:10.1002/j.1477-8696.1956.tb00264.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, 87230, doi:10.1016/S0065-2687(08)60262-9.

  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica Experiment. Bull. Amer. Meteor. Soc., 93, 15671579, doi:10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Sumner, G., and Bonell M. , 1986: Circulation and daily rainfall in the North Queensland wet seasons 1979–1982. J. Climatol., 6, 531549, doi:10.1002/joc.3370060507.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., and Lau K.-M. , 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 780 235 22
PDF Downloads 519 171 24