Stable Water Isotopes across a Transect of the Southern Alps, New Zealand

Tim Kerr National Institute of Water and Atmospheric Research Ltd., Christchurch, New Zealand

Search for other papers by Tim Kerr in
Current site
Google Scholar
PubMed
Close
,
M. S. Srinivasan National Institute of Water and Atmospheric Research Ltd., Christchurch, New Zealand

Search for other papers by M. S. Srinivasan in
Current site
Google Scholar
PubMed
Close
, and
Jeremy Rutherford National Institute of Water and Atmospheric Research Ltd., Christchurch, New Zealand

Search for other papers by Jeremy Rutherford in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stable water isotope concentrations were obtained from samples of stream water at 29 sites in a west–east transect across the Southern Alps of New Zealand, where westerly conditions dominate the precipitation regime. The samples were taken from small catchment streams during a time of extended recession as a means of collecting time and space averages of the source precipitation. The isotopic concentrations from sites at either end of the transect lead to a drying ratio estimate of 22%–34% for this region of the Southern Alps. The isotope concentrations increased from west to east, indicating that precipitation in the lee area originates from higher and/or colder condensation than on the windward side. The transect was divided into three regions according to the deuterium-excess (d excess) results. Increasing d-excess values on the windward side of the mountains were speculated to be a result of some unknown combination of reducing relative evapotranspiration, increasing recycling of water vapor, and increasing nonequilibrating condensation from high-intensity precipitation. Low d-excess values in the region immediately lee of the mountains were consistent with below-cloud evaporation associated with increased hydrometeor drift into the drier lee side. High d excess in the more distant lee side was attributed to a secondary source of moisture (from the east and south). The information gained has supported current concepts of the precipitation processes dominant in the region and has provided additional quantitative measurements with which to validate future precipitation modeling efforts.

Corresponding author address: Tim Kerr, CEAZA, Raúl Bitrán 1305, La Serena, Chile. E-mail: timkerr37@hotmail.com

Current affiliation: Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile.

Abstract

Stable water isotope concentrations were obtained from samples of stream water at 29 sites in a west–east transect across the Southern Alps of New Zealand, where westerly conditions dominate the precipitation regime. The samples were taken from small catchment streams during a time of extended recession as a means of collecting time and space averages of the source precipitation. The isotopic concentrations from sites at either end of the transect lead to a drying ratio estimate of 22%–34% for this region of the Southern Alps. The isotope concentrations increased from west to east, indicating that precipitation in the lee area originates from higher and/or colder condensation than on the windward side. The transect was divided into three regions according to the deuterium-excess (d excess) results. Increasing d-excess values on the windward side of the mountains were speculated to be a result of some unknown combination of reducing relative evapotranspiration, increasing recycling of water vapor, and increasing nonequilibrating condensation from high-intensity precipitation. Low d-excess values in the region immediately lee of the mountains were consistent with below-cloud evaporation associated with increased hydrometeor drift into the drier lee side. High d excess in the more distant lee side was attributed to a secondary source of moisture (from the east and south). The information gained has supported current concepts of the precipitation processes dominant in the region and has provided additional quantitative measurements with which to validate future precipitation modeling efforts.

Corresponding author address: Tim Kerr, CEAZA, Raúl Bitrán 1305, La Serena, Chile. E-mail: timkerr37@hotmail.com

Current affiliation: Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile.

Save
  • Anderton, P. W., 1976: Ivory Glacier, representative basin for the glacial hydrological region 1972–73. Ministry of Works and Development and National Water and Soil Conservation Organisation, Hydrological Research Annual Rep. 35, 31 pp.

  • Chamberlain, C. P., Poage M. A. , Craw D. , and Reynolds R. C. , 1999: Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chem. Geol., 155, 279294, doi:10.1016/S0009-2541(98)00165-X.

    • Search Google Scholar
    • Export Citation
  • Chater, A., and Sturman A. , 1998: Atmospheric conditions influencing the spillover of rainfall to lee of the Southern Alps, New Zealand. Int. J. Climatol., 18, 7792, doi:10.1002/(SICI)1097-0088(199801)18:1<77::AID-JOC218>3.0.CO;2-M.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Smith R. B. , and Wesley D. A. , 2013: Theory, observations, and predictions of orographic precipitation. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F.K. Chow, S. F. J. De Wekker, and B. J. Snyder., Eds., Springer, 291–344, doi:10.1007/978-94-007-4098-3_6.

    • Search Google Scholar
    • Export Citation
  • Coplen, T. B., Neiman P. J. , White A. B. , Landwehr J. M. , Ralph F. M. , and Dettinger M. D. , 2008: Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm. Geophys. Res. Lett., 35, L21808, doi:10.1029/2008GL035481.

    • Search Google Scholar
    • Export Citation
  • Craig, H., 1961: Isotopic variations in meteoric waters. Science, 133, 17021703, doi:10.1126/science.133.3465.1702.

  • Craig, H., and Gordon L. I. , 1965: Deuterium and Oxygen 18 variations in the ocean and marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiogi, Ed., CNR, 9–130.

  • Cui, J., An S. , Wang Z. , Fang C. , Liu Y. , Yang H. , Xu Z. , and Liu S. , 2009: Using deuterium excess to determine the sources of high-altitude precipitation: Implications in hydrological relations between sub-alpine forests and alpine meadows. J. Hydrol., 373, 2433, doi:10.1016/j.jhydrol.2009.04.005.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16A, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Davie, T. J. A., Fahey B. D. , and Stewart M. K. , 2006: Tussock grasslands and high water yield: A review of the evidence. J. Hydrol. N. Z., 45, 8394.

    • Search Google Scholar
    • Export Citation
  • Fahey, B., Davie T. , and Stewart M. , 2011: The application of a water balance model to assess the role of fog in water yields from catchments in the east Otago uplands, South Island, New Zealand. J. Hydrol. N. Z., 51, 279292.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., and O’Neil J. R. , 1977: Compilation of stable isotope fractionation factors of geochemical interest. USGS Professional Paper 440-KK, 116 pp. [Available online at http://pubs.usgs.gov/pp/0440kk/report.pdf.]

  • Froelich, K., Gibson J. J. , and Aggarwal P. K. , 2001: Deuterium excess in precipitation and its climatological significance. Study of Environmental Change Using Isotope Techniques, C&S Papers Series 13/P, International Atomic Energy Agency, 54–65.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2009: Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies. Geology, 37, 791794, doi:10.1130/G30008A.1.

    • Search Google Scholar
    • Export Citation
  • Grant, N., and Saito L. , 2013: Linking wildlife, water, and climate. Bull. Amer. Meteor. Soc., 94, 16431645, doi:10.1175/BAMS-D-11-00273.1.

    • Search Google Scholar
    • Export Citation
  • Hren, M. T., Bookhagen B. , Blisniuk P. M. , Booth A. L. , and Chamberlain C. P. , 2009: δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett., 288, 2032, doi:10.1016/j.epsl.2009.08.041.

    • Search Google Scholar
    • Export Citation
  • IAEA and WMO, cited 2015: Global Network of Isotopes in Precipitation (GNIP) database. [Available online at http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.]

  • Ingraham, N. L., and Mark A. F. , 2000: Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands. Austral Ecol., 25, 402408, doi:10.1046/j.1442-9993.2000.01052.x.

    • Search Google Scholar
    • Export Citation
  • Kendall, C., and Coplen T. B. , 2001: Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Processes, 15, 13631393, doi:10.1002/hyp.217.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., and Fung I. , 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Liotta, M., Favara R. , and Valenza M. , 2006: Isotopic composition of the precipitations in the central Mediterranean: Origin marks and orographic precipitation effects. J. Geophys. Res., 111, D19302, doi:10.1029/2005JD006818.

    • Search Google Scholar
    • Export Citation
  • Metsers, L., Moore T. , Frew R. , and Darling M. , 2009: Isotopic variability of rainfall across New Zealand January 2007–February 2008. Rep. for Biosecurity NZ, 57 pp.

  • Mook, W. G., 2001: Introduction—Theory, Methods, Review. Vol. 1, Environmental Isotopes in the Hydrological Cycle: Principles and Applications, UNESCO and IAEA, 164 pp.

  • Mullan, B., Porteous A. , Wratt D. , and Hollis M. , 2005: Changes in drought risk with climate change. NIWA Client Rep. WLG2005-23, 58 pp. [Available online at www.mfe.govt.nz/publications/climate-change/changes-drought-risk-climate-change.]

  • NOAA/NCEP/NWS and U.S. Department of Commerce, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research data archive at Computational and Information Systems Laboratory, NCAR, Boulder, CO, doi:10.5065/D6M043C6.

  • NZMS, 1985: New Zealand annual rainfall: Normals 1951–1980. New Zealand Meteorological Service Miscellaneous Publ. 175, Part 6, 36 pp.

  • Poage, M. A., and Chamberlain C. P. , 2001: Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. Amer. J. Sci., 301, 115, doi:10.2475/ajs.301.1.1.

    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, cited 2015: PRISM Climate Data. [Available online at http://prism.oregonstate.edu.]

  • Purdie, H., Bertler N. , Mackintosh A. , Baker J. , and Rhodes R. , 2010: Isotopic and elemental changes in winter snow accumulation on glaciers in the Southern Alps of New Zealand. J. Climate, 23, 47374749, doi:10.1175/2010JCLI3701.1.

    • Search Google Scholar
    • Export Citation
  • Purdy, J. C., Austin G. L. , Seed A. W. , and Cluckie I. D. , 2005: Radar evidence of orographic enhancement due to the seeder feeder mechanism. Meteor. Appl., 12, 199206, doi:10.1017/S1350482705001672.

    • Search Google Scholar
    • Export Citation
  • Ruddell, A., and Budd W. F. , 1990: An investigation into the feasibility of using a New Zealand ice core for paleo-climate interpretation. Rep. to the Australia/New Zealand/United Kingdom tripartite climate change committee, 22 pp.

  • Ryan, A. P., 1987: The climate and weather of Canterbury (including Aorangi). New Zealand Meteorological Service Misc. Publ. 115(17), 66 pp. [Available online at http://docs.niwa.co.nz/library/public/nzmsmp115-17.pdf.]

  • Scholl, M. A., Giambelluca T. W. , Gingerich S. B. , Nullet M. A. , and Loope L. L. , 2007: Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water. Water Resour. Res., 43, W12411, doi:10.1029/2007WR006011.

    • Search Google Scholar
    • Export Citation
  • Sinclair, K. E., Marshall S. J. , and Moran T. A. , 2011: A Lagrangian approach to modelling stable isotopes in precipitation over mountainous terrain. Hydrol. Processes, 25, 24812491, doi:10.1002/hyp.7973.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Evans J. P. , 2007: Orographic precipitation and water vapor fractionation over the Southern Andes. J. Hydrometeor., 8, 319, doi:10.1175/JHM555.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Jiang Q. , Fearon M. , Tabary P. , Dorninger M. , Doyle J. , and Benoit R. , 2003: Orographic precipitation and air mass transformation: An alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454, doi:10.1256/qj.01.212.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Barstad I. , and Bonneau L. , 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, doi:10.1175/JAS-3376.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Schafer P. , Kirshbaum D. J. , and Regina E. , 2009: Orographic precipitation in the tropics: Experiments in Dominica. J. Atmos. Sci., 66, 16981716, doi:10.1175/2008JAS2920.1.

    • Search Google Scholar
    • Export Citation
  • Stern, L. A., and Blisniuk P. M. , 2002: Stable isotope composition of precipitation across the southern Patagonian Andes. J. Geophys. Res., 107, 4667, doi:10.1029/2002JD002509.

    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., 1975: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res., 80, 11331146, doi:10.1029/JC080i009p01133.

    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., and Taylor C. B. , 1981: Environmental isotopes in New Zealand hydrology. 1. Introduction: The role of oxygen-18, deuterium, and tritium in hydrology. N. Z. J. Sci., 24, 295311.

    • Search Google Scholar
    • Export Citation
  • Stewart, M. K., Cox M. A. , James M. R. , and Lyon G. L. , 1983: Deuterium in New Zealand Rivers and Streams. Rep. INS-R–320, Institute of Nuclear Sciences, D.S.I.R., Lower Hutt, New Zealand, 44 pp.

  • Tait, A., and Woods R. , 2007: Spatial interpolation of daily potential evapotranspiration for New Zealand using a spline model. J. Hydrometeor., 8, 430438, doi:10.1175/JHM572.1.

    • Search Google Scholar
    • Export Citation
  • Tait, A., Henderson R. D. , Turner R. , and Zheng X. , 2006: Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int. J. Climatol., 26, 20972115, doi:10.1002/joc.1350.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. B., 1990: Stable isotope compositions of monthly precipitation samples collected in New Zealand and Raratonga. DSIR Physical Sciences Rep. 3, Lower Hutt, New Zealand, 17 pp.

  • Tian, L., Masson-Delmotte V. , Stievenard M. , Yao T. , and Jouzel J. , 2001: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106, 28 08128 088, doi:10.1029/2001JD900186.

    • Search Google Scholar
    • Export Citation
  • Warburton, J. A., Demoz B. B. , and Stone R. H. , 1993: Oxygen isotopic variations of snowfall from winter storms in the central Sierra Nevada; Relation to ice growth microphysics and mesoscale structure. Atmos. Res., 29, 135151, doi:10.1016/0169-8095(93)90001-5.

    • Search Google Scholar
    • Export Citation
  • Wratt, D. S., Revell M. J. , Sinclair M. , Gray W. R. , Henderson R. D. , and Chater A. M. , 2000: Relationships between air mass properties and mesoscale rainfall in New Zealand’s Southern Alps. Atmos. Res., 52, 261282, doi:10.1016/S0169-8095(99)00038-1.

    • Search Google Scholar
    • Export Citation
  • Yuan, F., and Miyamoto S. , 2008: Characteristics of oxygen-18 and deuterium composition in waters of the Pecos River in the American Southwest. Chem. Geol., 255, 220230, doi:10.1016/j.chemgeo.2008.06.045.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 88 20
PDF Downloads 235 45 5