A Preliminary Study toward Consistent Soil Moisture from AMSR2

Robert M. Parinussa Earth and Climate Cluster, VU University Amsterdam, Amsterdam, Netherlands, and the School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Robert M. Parinussa in
Current site
Google Scholar
PubMed
Close
,
Thomas R. H. Holmes Hydrology and Remote Sensing Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Beltsville, and Science Systems and Applications, Lanham, Maryland

Search for other papers by Thomas R. H. Holmes in
Current site
Google Scholar
PubMed
Close
,
Niko Wanders Department of Physical Geography, Utrecht University, Utrecht, Netherlands

Search for other papers by Niko Wanders in
Current site
Google Scholar
PubMed
Close
,
Wouter A. Dorigo Department of Geodesy and Geo-Information, Vienna University of Technology, Vienna, Austria

Search for other papers by Wouter A. Dorigo in
Current site
Google Scholar
PubMed
Close
, and
Richard A. M. de Jeu Earth and Climate Cluster, VU University Amsterdam, Amsterdam, Netherlands

Search for other papers by Richard A. M. de Jeu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has provided Earth scientists with a consistent and continuous global soil moisture dataset. A major challenge remains to achieve synergy between these soil moisture datasets, which is hampered by the lack of an overlapping observation period of the sensors. Here, observations of the multifrequency microwave radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite were used to improve consistency between AMSR-E and AMSR2. Several scenarios to achieve synergy between the AMSR-E and AMSR2 soil moisture products were evaluated. The novel soil moisture retrievals from C-band observations, a frequency band that is lacking on board the TRMM satellite, are also presented. A global comparison of soil moisture retrievals against ERA-Interim soil moisture demonstrates the need for an intercalibration procedure. Several different scenarios based on filtering were tested, and the impact on the soil moisture retrievals was evaluated against two independent reference soil moisture datasets (reanalysis and in situ soil moisture) that cover both individual observation periods of the AMSR-E and AMSR2 sensors. Results show a high degree of consistency between both satellite products and two independent reference products for the soil moisture products retrieved from X-band observations. Care should be taken in the interpretation of the presented soil moisture products, and future research is needed to further align the AMSR2 and AMSR-E sensor calibrations.

Corresponding author address: R. M. Parinussa, University of New South Wales, Vallentine Annexe (H22), Room 127, Sydney NSW 2052, Australia. E-mail: r.parinussa@unsw.edu.au

Abstract

A preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has provided Earth scientists with a consistent and continuous global soil moisture dataset. A major challenge remains to achieve synergy between these soil moisture datasets, which is hampered by the lack of an overlapping observation period of the sensors. Here, observations of the multifrequency microwave radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite were used to improve consistency between AMSR-E and AMSR2. Several scenarios to achieve synergy between the AMSR-E and AMSR2 soil moisture products were evaluated. The novel soil moisture retrievals from C-band observations, a frequency band that is lacking on board the TRMM satellite, are also presented. A global comparison of soil moisture retrievals against ERA-Interim soil moisture demonstrates the need for an intercalibration procedure. Several different scenarios based on filtering were tested, and the impact on the soil moisture retrievals was evaluated against two independent reference soil moisture datasets (reanalysis and in situ soil moisture) that cover both individual observation periods of the AMSR-E and AMSR2 sensors. Results show a high degree of consistency between both satellite products and two independent reference products for the soil moisture products retrieved from X-band observations. Care should be taken in the interpretation of the presented soil moisture products, and future research is needed to further align the AMSR2 and AMSR-E sensor calibrations.

Corresponding author address: R. M. Parinussa, University of New South Wales, Vallentine Annexe (H22), Room 127, Sydney NSW 2052, Australia. E-mail: r.parinussa@unsw.edu.au
Save
  • Albergel, C., and Coauthors, 2010: Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France. Hydrol. Earth Syst. Sci., 14, 21772191, doi:10.5194/hess-14-2177-2010.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., de Jeu R. A. M. , Schellekens J. , van Dijk A. I. J. M. , and Bruijnzeel L. A. , 2009: Improving curve number based storm runoff estimates using soil moisture proxies. IEEE J. Sel. Topics Appl. Earth Observ., 2, 250259, doi:10.1109/JSTARS.2009.2031227.

    • Search Google Scholar
    • Export Citation
  • Bisselink, B., van Meijgaard E. , Dolman A. J. , and de Jeu R. A. M. , 2011: Initializing a regional climate model with satellite-derived soil moisture. J. Geophys. Res.,116, D02121, doi:10.1029/2010JD014534.

  • Brocca, L., Melone F. , Moramarco T. , Wagner W. , Naeimi V. , Bartalis Z. , and Hasenauer S. , 2010: Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci., 14, 18811893, doi:10.5194/hess-14-1881-2010.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2011: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ., 115, 33903408, doi:10.1016/j.rse.2011.08.003.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., Ponziani F. , Moramarco T. , Melone F. , Berni N. , and Wagner W. , 2012: Improving landslide forecasting using ASCAT-derived soil moisture data: A case study of the Torgiovannetto landslide in central Italy. Remote Sens., 4, 12321244, doi:10.3390/rs4051232.

    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2013: Special climate statement 46—Australia’s warmest September on record. Bureau of Meteorology, Australian Government, 26 pp. [Available online at www.bom.gov.au/climate/current/statements/scs46.pdf.]

  • Cook, R. D., 1977: Detection of influential observations in linear regression. Technometrics, 19 (1), 1518.

  • Crow, W. T., Miralles D. G. , and Cosh M. H. , 2010: A quasi-global evaluation system for satellite based surface soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 48, 25162527, doi:10.1109/TGRS.2010.2040481.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., Wagner W. , Holmes T. R. H. , Dolman A. J. , van de Giesen N. , and Friesen J. , 2008: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys., 29, 399420, doi:10.1007/s10712-008-9044-0.

    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., Holmes, T. R. H. , Parinussa R. M. , and Owe M. , 2014: A spatially coherent global soil moisture product with improved temporal resolution. J. Hydrol., 516, 284296, doi:10.1016/j.jhydrol.2014.02.015.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., Scipal K. , Parinussa R. M. , Liu Y. Y. , Wagner W. , de Jeu R. A. M. , and Naeimi V. , 2010: Error characterization of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, doi:10.5194/hess-14-2605-2010.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., van Oevelen P. , Wagner W. , Drusch M. , Mecklenburg S. , Robock A. , and Jackson T. , 2011: A new international network for in situ soil moisture data. Eos, Trans. Amer. Geophys. Union, 92, 141142, doi:10.1029/2011EO170001.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., Xaver A. , Vreugdenhil M. , Gruber A. , Hegyiova A. , Sanchis-Dufau A. D. , Wagner W. , and Drusch A. , 2013: Global automated quality control of in-situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., doi:10.1016/j.rse.2014.07.023, in press.

    • Search Google Scholar
    • Export Citation
  • Draper, C., Walker J. , Steinle P. , de Jeu R. A. M. , and Holmes T. R. H. , 2009: An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ., 113, 703710, doi:10.1016/j.rse.2008.11.011.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. IEEE Proc., 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Gaiser, P., and Coauthors, 2004: The WindSat Spaceborne Polarimetric Microwave Radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472360, doi:10.1109/TGRS.2004.836867.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2010: Implementation plan for the global observing system for climate in support of the UNFCCC. WMO/TD 1244, 23 pp. [Available online at https://www.wmo.int/pages/prog/gcos/Publications/gcos-92_GIP_ES.pdf.]

  • Hollmann, R., and Coauthors, 2013: The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 1541–1552, doi:10.1175/BAMS-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, T. R. H., De Jeu R. A. M. , Owe M. , and Dolman A. J. 2009: Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res.,114, D04113, doi:10.1029/2008JD010257.

  • Holmes, T. R. H., Crow W. T. , Tugrul Yilmaz M. , Jackson T. J. , and Basara J. B. , 2013: Enhancing model-based land surface temperature estimates using multiplatform microwave observations. J. Geophys. Res. Atmos.,118, 577–591, doi:10.1002/jgrd.50113.

  • Imaoka, K., Kachi M. , Kasahara M. , Ito N. , Nakagawa K. , and Oki T. , 2010: Instrument performance and calibration of AMSR-E and AMSR2. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci.,38 (8), 13–16. [Available online at www.isprs.org/proceedings/XXXVIII/part8/pdf/JTS13_20100322190615.pdf.]

  • Jackson, T., Hurkmans R. , Hsu A. , and Cosh M. , 2004: Soil moisture algorithm validation using data from the Advanced Microwave Scanning Radiometer (AMSR-E) in Mongolia. Riv. Ital. Telerilevamento, 30, 3750.

    • Search Google Scholar
    • Export Citation
  • Jones, L. A., Ferguson C. R. , Kimball J. S. , Zhang K. , Chan S. K. , McDonald K. C. , Njoku E. G. , and Wood E. F. , 2010: Daily land surface air temperature retrieval from AMSR-E: Comparison with AIRS/AMSU. IEEE J. Appl. Earth Obs. Remote Sens., 3, 111123, doi:10.1109/JSTARS.2010.2041530.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. IEEE Proc., 98, 666687, doi:10.1109/JPROC.2010.2043032.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, L., Njoku E. , Im E. , Chang P. , and Germaine K. , 2004: A preliminary survey of radio frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens., 42, 380390, doi:10.1109/TGRS.2003.817195.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., Dorigo W. A. , Parinussa R. M. , de Jeu R. A. M. , Wagner W. , McCabe M. F. , Evans J. P. , and van Dijk A. I. J. M. , 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, doi:10.1016/j.rse.2012.03.014.

    • Search Google Scholar
    • Export Citation
  • Loew, A., Holmes T. , and de Jeu R. , 2009: The European heat wave 2003: Early indicators from multisensoral microwave remote sensing? J. Geophys. Res.,114, D05103, doi:10.1029/2008JD010533.

  • Meesters, A. G. C. A., de Jeu R. A. M. , and Owe M. , 2005: Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 2, 121123, doi:10.1109/LGRS.2005.843983.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2014: El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Climate Change.,4, 122–126, doi:10.1038/nclimate2068.

  • Naeimi, V., Scipal K. , Bartalis Z. , Hasenauer S. , and Wagner W. , 2009: An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens., 47, 19992013, doi:10.1109/TGRS.2008.2011617.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., Jackson T. J. , Lakshemi V. , Chan T. K. , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229, doi:10.1109/TGRS.2002.808243.

    • Search Google Scholar
    • Export Citation
  • Oliva, R., Daganzo-Eusebio E. , Kerr Y. , Mecklenburg S. , Nieto S. , Richauma P. , and Gruhier C. , 2012: SMOS radio frequency interference scenario: Status actions taken to improve the RFI environment in the 1400–1427 MHz passive band. IEEE Trans. Geosci. Remote Sens., 50, 14271438, doi:10.1109/TGRS.2012.2182775.

    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res.,113, F01002, doi:10.1029/2007JF000769.

  • Parinussa, R. M., Holmes T. R. H. , Yilmaz M. T. , and Crow W. T. , 2011a: The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations. Hydrol. Earth Syst. Sci., 15, 31353151, doi:10.5194/hess-15-3135-2011.

    • Search Google Scholar
    • Export Citation
  • Parinussa, R. M., Meesters A. G. C. A. , Liu Y. Y. , Dorigo W. A. , Wagner W. , and de Jeu R. A. M. , 2011b: Error estimates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. IEEE Geosci. Remote Sens. Lett., 8, 779783, doi:10.1109/LGRS.2011.2114872.

    • Search Google Scholar
    • Export Citation
  • Parinussa, R. M., Holmes T. R. H. , and de Jeu R. A. M. , 2012: Soil moisture retrievals from the WindSat polarimetric microwave radiometer. IEEE Trans. Geosci. Remote Sens., 50, 26832694, doi:10.1109/TGRS.2011.2174643.

    • Search Google Scholar
    • Export Citation
  • Parinussa, R. M., Yilmaz M. T. , Anderson M. C. , Hain C. R. , and de Jeu R. A. M. , 2014: An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula. Hydrol. Processes,28, 4865–4876, doi:10.1002/hyp.9975.

  • Rebel, K. T., de Jeu R. A. M. , Ciais P. , Viovy N. , Piao S. L. , Kiely G. , and Dolman A. J. , 2012: A global analysis of soil moisture derived from satellite observations and a land surface model. Hydrol. Earth Syst. Sci., 16, 833847, doi:10.5194/hess-16-833-2012.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., Holmes T. R. H. , de Jeu R. A. M. , Naeimi V. , and Wagner W. , 2008: A possible solution for the problem of estimating the error structures of global soil moisture data sets. Geophys. Res. Lett., 35, L24403, doi:10.1029/2008GL035599.

    • Search Google Scholar
    • Export Citation
  • Seto, S., Takahashi N. , and Iguchi T. , 2005: Rain/no-rain classification methods for microwave radiometer observations over land using statistical information for brightness temperatures under no-rain conditions. J. Appl. Meteor., 44, 12431259, doi:10.1175/JAM2263.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., de Jeu R. A. M. , Guichard F. , Harris P. P. , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Naeimi V. , Scipal K. , de Jeu R. A. M. , and Martinez Fernandez J. , 2007: Soil moisture from operational meteorological satellites. Hydrogeol. J., 15, 121131, doi:10.1007/s10040-006-0104-6.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Dorigo W. A. , de Jeu R. A. M. , Fernandez-Prieto D. , Benveniste J. , Haas E. , and Ertl M. , 2012: Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture. Proc. XXII ISPRS Congress, Melbourne, Australia, ISPRS, 315–321. [Available online at www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/315/2012/isprsannals-I-7-315-2012.pdf.]

  • Wanders, N., Karssenberg D. , Bierkens M. F. P. , Parinussa R. M. , de Jeu R. A. M. , van Dam J. C. , and de Jong S. M. , 2012: Observation uncertainty of satellite soil moisture products determined with physically based modeling. Remote Sens. Environ., 127, 341356, doi:10.1016/j.rse.2012.09.004.

    • Search Google Scholar
    • Export Citation
  • Wanders, N., Bierkens M. F. P. , de Jong S. M. , de Roo A. , and Karssenberg D. , 2014a: The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour. Res., 50, 68746891, doi:10.1002/2013WR014639.

    • Search Google Scholar
    • Export Citation
  • Wanders, N., Karssenberg D. , de Roo A. , de Jong S. M. , and Bierkens M. F. P. , 2014b: The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci., 18, 23432357, doi:10.5194/hess-18-2343-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1336 286 17
PDF Downloads 764 167 10