Analyzing the Inundation Pattern of the Poyang Lake Floodplain by Passive Microwave Data

Haolu Shang State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, and Delft University of Technology, Delft, Netherlands

Search for other papers by Haolu Shang in
Current site
Google Scholar
PubMed
Close
,
Li Jia State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Li Jia in
Current site
Google Scholar
PubMed
Close
, and
Massimo Menenti Delft University of Technology, Delft, Netherlands

Search for other papers by Massimo Menenti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-saturated soil and open water areas of the Poyang Lake floodplain from 2001 to 2008, capturing the inundation patterns of this area in space and time. The polarization difference brightness temperature (PDBT) at 37 GHz is sensitive to the water extension even under dense vegetation. The zero-order radiative transfer model was simplified to retrieve the vertical–horizontal (V–H)-polarized effective emissivity difference from the PDBT at 37 GHz. Vegetation fractional area and vegetation transmission function were derived from NDVI to represent the vegetation attenuation. This effective emissivity difference has a quasi-linear relationship with the fractional area of water-saturated soil and standing water, no matter the frequency. Using the multifrequency-polarization surface emission (Qp) model and the Dobson model of the soil–water mixture, the two segments of this relationship were combined into a quasi-linear model. Comparing the retrieved water-saturated soil and standing water area of Poyang Lake with the lake area obtained from the MODIS and synthetic aperture radar (SAR) image at higher spatial resolution, the calculations show a good fit with the MODIS and SAR data, with R2 = 0.7664 and relative RMSE = 17.74%. The cross-correlation analysis shows that the Poyang Lake extension fluctuates with a 5-day time lag with the upstream land area of water-saturated soil and standing water. Since the closure of the Three Gorges Dam, this relationship is more evident.

Corresponding author address: Li Jia, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Datun Road Nr. 20, Beijing 100101, China. E-mail: jiali@radi.ac.cn

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Abstract

The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-saturated soil and open water areas of the Poyang Lake floodplain from 2001 to 2008, capturing the inundation patterns of this area in space and time. The polarization difference brightness temperature (PDBT) at 37 GHz is sensitive to the water extension even under dense vegetation. The zero-order radiative transfer model was simplified to retrieve the vertical–horizontal (V–H)-polarized effective emissivity difference from the PDBT at 37 GHz. Vegetation fractional area and vegetation transmission function were derived from NDVI to represent the vegetation attenuation. This effective emissivity difference has a quasi-linear relationship with the fractional area of water-saturated soil and standing water, no matter the frequency. Using the multifrequency-polarization surface emission (Qp) model and the Dobson model of the soil–water mixture, the two segments of this relationship were combined into a quasi-linear model. Comparing the retrieved water-saturated soil and standing water area of Poyang Lake with the lake area obtained from the MODIS and synthetic aperture radar (SAR) image at higher spatial resolution, the calculations show a good fit with the MODIS and SAR data, with R2 = 0.7664 and relative RMSE = 17.74%. The cross-correlation analysis shows that the Poyang Lake extension fluctuates with a 5-day time lag with the upstream land area of water-saturated soil and standing water. Since the closure of the Three Gorges Dam, this relationship is more evident.

Corresponding author address: Li Jia, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Datun Road Nr. 20, Beijing 100101, China. E-mail: jiali@radi.ac.cn

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Save
  • Alfieri, S. M., De Lorenzi F. , and Menenti M. , 2013: Mapping air temperature using time series analysis of LST: The SINTESI approach. Nonlinear Processes Geophys., 20, 513527, doi:10.5194/npg-20-513-2013.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R., Knowles K. , Brodzik M. , and Hardman M. A. , 1998: DMSP SSM/I–SSMIS Pathfinder daily EASE-Grid brightness temperatures, version 2. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0032.]

  • Brodzik, M., and Knowles K. , cited 2002: EASE-Grid: A versatile set of equal-area projections and grids. Discrete global grids: A web book, National Center for Geographic Information and Analysis, Santa Barbara, CA. [Available online at www.ncgia.ucsb.edu/globalgrids-book/ease_grid/.]

  • Calvet, J. C., Wigneron J. P. , Chanzy A. , Raju S. , and Laguerre L. , 1995: Microwave dielectric properties of a silt-loam at high frequencies. IEEE Trans. Geosci. Remote Sens., 33, 634642, doi:10.1109/36.387579.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1989: Monitoring global land surface using Nimbus-7 37 GHz data: Theory and examples. Int. J. Remote Sens., 10, 15791605, doi:10.1080/01431168908903993.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1991: Passive microwave remote sensing contribution to hydrological variables. Surv. Geophys.,12, 63–84, doi:10.1007/BF01903412.

  • Choudhury, B. J., and Tucker C. J. , 1987: Monitoring global vegetation using Nimbus-7 37 GHz data: Some empirical relations. Int. J. Remote Sens., 8, 10851090, doi:10.1080/01431168708954754.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., Wang J. R. , Hsu A. Y. , and Chien Y. L. , 1990: Simulated and observed 37 GHz emission over Africa. Int. J. Remote Sens., 11, 18371868, doi:10.1080/01431169008955133.

    • Search Google Scholar
    • Export Citation
  • De Ridder, K., 2000: Quantitative estimation of skin soil moisture with the special sensor microwave/imager. Bound.-Layer Meteor., 96, 421432, doi:10.1023/A:1002668624711.

    • Search Google Scholar
    • Export Citation
  • Dobson, M. C., Ulaby F. T. , Hallikainen M. T. , and Elrayes M. A. , 1985: Microwave dielectric behavior of wet soil. 2. Dielectric mixing models. IEEE Trans. Geosci. Remote Sens., 23, 3546, doi:10.1109/TGRS.1985.289498.

    • Search Google Scholar
    • Export Citation
  • Gao, H. L., Wood E. F. , Drusch M. , Crow W. , and Jackson T. J. , 2004: Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99. J. Hydrometeor., 5, 4963, doi:10.1175/1525-7541(2004)005<0049:UAMEMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, S. K., Sippel S. J. , and Melack J. M. , 1996: Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch. Hydrobiol., 137, 123.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • Holmes, T. R. H., De Jeu R. A. M. , Owe M. , and Dolman A. J. , 2009: Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res., 114, D04113, doi:10.1029/2008JD010257.

    • Search Google Scholar
    • Export Citation
  • Huber, C., and Coauthors, 2013: Twelve year of water resource monitoring over Yangtze middle reaches exploiting Dragon time series and field measurements. Proc. Dragon 2 Final Results and Dragon 3 Kick-Off Symp., Beijing, China, Ministry of Science and Technology of China and European Space Agency, CD-ROM.

  • Jia, L., Shang H. , Hu G. , and Menenti M. , 2011: Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data. Hydrol. Earth Syst. Sci., 15, 10471064, doi:10.5194/hess-15-1047-2011.

    • Search Google Scholar
    • Export Citation
  • Julien, Y., Sobrino J. A. , and Verhoef W. , 2006: Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ., 103, 4355, doi:10.1016/j.rse.2006.03.011.

    • Search Google Scholar
    • Export Citation
  • Kirdiashev, K. P., Chucklantsev A. A. , and Shutko A. , 1979: Microwave radiation of the earth’s surface in the presence of vegetation cover. Radiotecknica, 24, 256264.

    • Search Google Scholar
    • Export Citation
  • Menenti, M., Azzali S. , Verhoef W. , and van Swol R. , 1993: Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Adv. Space Res., 13, 233237, doi:10.1016/0273-1177(93)90550-U.

    • Search Google Scholar
    • Export Citation
  • Menenti, M., Jia L. , Azzali S. , Roerink G. J. , Gonzalez-Loyarte M. , Leguizamon S. , and Verhoef W. , 2010: Analysis of vegetation response to climate variability using extended time series of multispectral satellite images. Remote Sensing Optical Observations of Vegetation Properties, F. Maselli, M. Meneti, and P. A. Brivio, Eds., Research Signpost, 131–164.

  • Moody, A., and Johnson D. M. , 2001: Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens. Environ., 75, 305323, doi:10.1016/S0034-4257(00)00175-9.

    • Search Google Scholar
    • Export Citation
  • Poe, G. A., 1990: Optimum interpolation of imaging microwave radiometer data. IEEE Trans. Geosci. Remote Sens., 28, 800810, doi:10.1109/36.58966.

    • Search Google Scholar
    • Export Citation
  • Roerink, G. J., Menenti M. , and Verhoef W. , 2000: Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens., 21, 19111917, doi:10.1080/014311600209814.

    • Search Google Scholar
    • Export Citation
  • Roerink, G. J., Menenti M. , Soepboer W. , and Su Z. , 2003: Assessment of climate impact on vegetation dynamics by using remote sensing. Phys. Chem. Earth Parts ABC, 28, 103109, doi:10.1016/S1474-7065(03)00011-1.

    • Search Google Scholar
    • Export Citation
  • Shi, J. C., Jiang L. M. , Zhang L. X. , Chen K. S. , Wigneron J. P. , and Chanzy A. , 2005: A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens., 43, 28312841, doi:10.1109/TGRS.2005.857902.

    • Search Google Scholar
    • Export Citation
  • Shi, J. C., Jackson T. , Tao J. , Du J. , Bindlish R. , Lu L. , and Chen K. S. , 2008: Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens. Environ., 112, 42854300, doi:10.1016/j.rse.2008.07.015.

    • Search Google Scholar
    • Export Citation
  • Sippel, S. J., Hamilton S. K. , Melack J. M. , and Choudhury B. J. , 1994: Determination of inundation area in the Amazon River floodplain using the SMMR 37 GHz polarization difference. Remote Sens. Environ., 48, 7076, doi:10.1016/0034-4257(94)90115-5.

    • Search Google Scholar
    • Export Citation
  • Sippel, S. J., Hamilton S. K. , Melack J. M. , and Novo E. M. M. , 1998: Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. Int. J. Remote Sens., 19, 30553074, doi:10.1080/014311698214181.

    • Search Google Scholar
    • Export Citation
  • van de Griend, A. A., and Owe M. , 1993: Determination of microwave vegetation optical depth and single scattering albedo from large-scale soil-moisture and Nimbus SMMR satellite-observations. Int. J. Remote Sens., 14, 18751886, doi:10.1080/01431169308954009.

    • Search Google Scholar
    • Export Citation
  • Verhoef, W., 1996: Application of Harmonic Analysis of NDVI Time Series (HANTS). Fourier Analysis of Temporal NDVI in the Southern African and American Continents, S. Azzali and M. Menenti, Eds., Netherlands Remote Sensing Board, 19–24.

  • Wang, J. R., and Schmugge T. J. , 1980: An empirical-model for the complex dielectric permittivity of soils as a function of water-content. IEEE Trans. Geosci. Remote Sens., 18, 288295, doi:10.1109/TGRS.1980.350304.

    • Search Google Scholar
    • Export Citation
  • Wen, J., Su Z. B. , and Ma Y. M. , 2003: Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data. J. Geophys. Res., 108, 4038, doi:10.1029/2002JD002176.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J. P., Kerr Y. , Chanzy A. , and Jin Y. Q. , 1993: Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sens. Environ., 46, 6172, doi:10.1016/0034-4257(93)90032-S.

    • Search Google Scholar
    • Export Citation
  • Yésou, H., and Coauthors, 2011: Nine years of water resources monitoring over the middle reaches of the Yangtze River, with ENVISAT, MODIS, Beijing-1 time series, Altimetric data and field measurements. Lakes Reservoirs, 16, 231247, doi:10.1111/j.1440-1770.2011.00481.x.

    • Search Google Scholar
    • Export Citation
  • Yésou, H., Huber C. , Shifeng H. , Xijun L. , and Sylviane D.-R. , 2013: Chinese lakes behaviours in the framework of the meteorology and water management practices: EO based monitoring lessons. Proc. Living Planet Symp. 2013, Edinburgh, United Kingdom, ESA, CD-ROM.

  • Zhao, L., and Coauthors, 2013: Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. J. Hydrol., 482, 92104, doi:10.1016/j.jhydrol.2012.12.033.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 979 423 8
PDF Downloads 191 76 9