Modeling Regional Crop Yield and Irrigation Demand Using SMAP Type of Soil Moisture Data

Husayn El Sharif School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Husayn El Sharif in
Current site
Google Scholar
PubMed
Close
,
Jingfeng Wang School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jingfeng Wang in
Current site
Google Scholar
PubMed
Close
, and
Aris P. Georgakakos School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Aris P. Georgakakos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Agricultural models, such as the Decision Support System for Agrotechnology Transfer cropping system model (DSSAT-CSM), have been developed for predicting crop yield at field and regional scales and to provide useful information for water resources management. A potentially valuable input to agricultural models is soil moisture. Presently, no observations of soil moisture exist covering the entire United States at adequate time (daily) and space (~10 km or less) resolutions desired for crop yield assessments. Data products from NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in modeling and forecasting crop yields and irrigation amount. A simple, efficient data assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is constrained to produce modeled crop yield and irrigation amounts that are consistent with SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data into the agricultural model provides an added benefit of reducing the uncertainty of modeled crop yields when the weather input data to the crop model are subject to large uncertainty.

Corresponding author address: Husayn El Sharif, School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr., Atlanta, GA 30332. E-mail: helsharif@gatech.edu

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Abstract

Agricultural models, such as the Decision Support System for Agrotechnology Transfer cropping system model (DSSAT-CSM), have been developed for predicting crop yield at field and regional scales and to provide useful information for water resources management. A potentially valuable input to agricultural models is soil moisture. Presently, no observations of soil moisture exist covering the entire United States at adequate time (daily) and space (~10 km or less) resolutions desired for crop yield assessments. Data products from NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in modeling and forecasting crop yields and irrigation amount. A simple, efficient data assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is constrained to produce modeled crop yield and irrigation amounts that are consistent with SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data into the agricultural model provides an added benefit of reducing the uncertainty of modeled crop yields when the weather input data to the crop model are subject to large uncertainty.

Corresponding author address: Husayn El Sharif, School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr., Atlanta, GA 30332. E-mail: helsharif@gatech.edu

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Save
  • Baier, W., and Robertson G. W. , 1968: The performance of soil moisture estimates as compared with the direct use of climatological data for estimating crop yields. Agric. Meteor., 5, 1731, doi:10.1016/0002-1571(68)90020-4.

    • Search Google Scholar
    • Export Citation
  • Bartalis, Z., Wagner W. , Naeimi V. , Hasenauer S. , Scipal K. , Bonekamp H. , Figa J. , and Anderson C. , 2007: Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett., 34, L20401, doi:10.1029/2007GL031088.

    • Search Google Scholar
    • Export Citation
  • Batts, C., and Kaleita A. L. , 2008: Data assimilation of near-surface in-situ soil moisture using the DSSAT crop model. Proc. 2008 ASABE Annual Int. Meeting, Providence, RI, ASABE, 083591, doi:10.13031/2013.24888.

  • Blöschl, G., Komma J. , and Hasenauer S. , 2009: Hydrological downscaling of soil moisture. Final Rep. to the H-SAF (Hydrology Satellite Application Facility) via the Austrian Central Institute for Meteorology and Geodynamics (ZAMG), 64 pp. [Available online at http://hsaf.meteoam.it/documents/reference/HSAF_VS_38_TUWIEN-final-report.pdf.]

  • Brown, T. C., Foti R. , and Ramirez J. A. , 2013: Projected freshwater withdrawals in the United States under a changing climate. Water Resour. Res., 49, 12591276, doi:10.1002/wrcr.20076.

    • Search Google Scholar
    • Export Citation
  • Cheng, K., Lin Y. , and Liou J. , 2008: Rain-gauge network evaluation and augmentation using geostatistics. Hydrol. Processes, 22, 25542564, doi:10.1002/hyp.6851.

    • Search Google Scholar
    • Export Citation
  • Daroub, S. H., Gerakis A. , Ritchie J. T. , Friesen D. K. , and Ryan J. , 2003: Development of a soil–plant phosphorus simulation model for calcareous and weathered tropical soils. Agric. Syst., 76, 11571181, doi:10.1016/S0308-521X(02)00082-3.

    • Search Google Scholar
    • Export Citation
  • Das, N. N., Entekhabi D. , and Njoku E. G. , 2011: An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Trans. Geosci. Remote Sens., 49, 15041512, doi:10.1109/TGRS.2010.2089526.

    • Search Google Scholar
    • Export Citation
  • Delécolle, R., Maas S. J. , Guérif M. , and Baret F. , 1992: Remote sensing and crop production models: present trends. ISPRS J. Photogramm. Remote Sens., 47, 145161, doi:10.1016/0924-2716(92)90030-D.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., Scipal K. , Parinussa R. M. , Liu Y. Y. , Wagner W. , de Jeu R. A. M. , and Naeimi V. , 2010: Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, doi:10.5194/hess-14-2605-2010.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., de Jeu R. , Chung D. , Parinussa R. , Liu Y. , Wagner W. , and Fernández-Prieto D. , 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405, doi:10.1029/2012GL052988.

    • Search Google Scholar
    • Export Citation
  • El-Sharkawy, M. A., 2011: Overview: Early history of crop growth and photosynthesis modeling. Biosystems, 103, 205211, doi:10.1016/j.biosystems.2010.08.004.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, doi:10.1175/2011JHM1380.1.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, A., Fleming P. , Dettinger M. , Peters-Lidard C. , Richmond T. C. , Reckhow K. , White K. , and Yates D. , 2014: Water resources. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 69–112, doi:10.7930/J0G44N6T.

  • Groenendyk, D. G., Kaleita A. L. , and Thorp K. R. , 2011: Assimilating in situ soil moisture measurements into the DSSAT-CSM using a Kalman filter. Proc. 2011 ASABE Annual Int. Meeting, Louisville, KY, ASABE, 1111093, doi:10.13031/2013.37420.

  • Hoogenboom, G., Wilkens P. , and Tsuji G. , 1999: Decision Support System for Agrotechnology Transfer (DSSAT) version 3. Vol. 4, University of Hawai‘i at Mānoa, CD-ROM.

  • Hoogenboom, G., and Coauthors, 2012: Decision Support System for Agrotechnology Transfer (DSSAT) version 4.5.1.023. University of Hawai‘i at Mānoa, CD-ROM.

  • Ines, A. V. M., Das N. N. , Hansen J. W. , and Njoku E. G. , 2013: Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ., 138, 149164, doi:10.1016/j.rse.2013.07.018.

    • Search Google Scholar
    • Export Citation
  • Jones, J. W., Keating B. A. , and Porter C. H. , 2001: Approaches to modular model development. Agric. Syst., 70, 421443, doi:10.1016/S0308-521X(01)00054-3.

    • Search Google Scholar
    • Export Citation
  • Jones, J. W., and Coauthors, 2003: The DSSAT cropping system model. Eur. J. Agron., 18, 235265, doi:10.1016/S1161-0301(02)00107-7.

  • Kenny, J. F., Barber N. L. , Hutson S. S. , Linsey K. S. , Lovelace J. K. , and Maupin M. A. , 2009: Estimated use of water in the United States in 2005. USGS Circular 1344, 52 pp. [Available online at http://pubs.usgs.gov/circ/1344/pdf/c1344.pdf.]

  • Lin, L.-F., Flores A. N. , Bisht G. , Narayan U. , Wang J. , and Bras R. L. , 2011: Dynamic downscaling of GPM precipitation and SMAP soil moisture using WRF-tRIBS-VEGGIE model—A preliminary test. 2011 Precipitation Measurement Missions Science Team Meeting, Denver, CO, NASA, 109.

  • Liu, H. L., and Coauthors, 2011: Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosyst., 89, 313328, doi:10.1007/s10705-010-9396-y.

    • Search Google Scholar
    • Export Citation
  • Maas, S. J., 1988: Use of remotely-sensed information in agricultural crop growth models. Ecol. Modell., 41, 247268, doi:10.1016/0304-3800(88)90031-2.

    • Search Google Scholar
    • Export Citation
  • McLoud, P. R., and Gronwald R. , 2007: Precision agriculture: NRCS support for emerging technologies. Agronomy Tech. Note 1, NRCS, 9 pp. [Available online at www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043474.pdf.]

  • Mishra, V., Cruise J. , and Mecikalski J. , 2012: Agricultural decision support through robust assimilation of satellite derived soil moisture estimates. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H31F-1177.

  • Mo, X., Liu S. , Lin Z. , Xu Y. , Xiang Y. , and McVicar T. R. , 2005: Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol. Modell., 183, 301322, doi:10.1016/j.ecolmodel.2004.07.032.

    • Search Google Scholar
    • Export Citation
  • Moulin, S., Bondeau A. , and Delecolle R. , 1998: Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens., 19, 10211036, doi:10.1080/014311698215586.

    • Search Google Scholar
    • Export Citation
  • NASA, cited 2014: Prediction of Worldwide Energy Resource (POWER): Agroclimatology. [Available online at http://power.larc.nasa.gov/common/php/POWER_AboutAgroclimatology.php.]

  • NCDC, 2006: Climate of Iowa. NCDC Doc., 3 pp. [Available online at www.crh.noaa.gov/images/dvn/downloads/Clim_IA_01.pdf.]

  • Njoku, E. G., Jackson T. J. , Lakshmi V. , Chan T. K. , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens.,41, 215229, doi:10.1109/TGRS.2002.808243.

    • Search Google Scholar
    • Export Citation
  • NRC, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

  • NRCS, cited 2014: Ames (2031): Site information and reports. [Available online at www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2031&state=ia.]

  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res.,113, F01002, doi:10.1029/2007JF000769.

  • Shibusawa, S., 1998: Precision farming and terra-mechanics. Proc. Fifth ISTVS Asia–Pacific Regional Conf., Seoul, South Korea, ISTVS.

  • Tsuji, G., Uehara G. , and Balas S. , Eds., 1994: DSSAT version 3. University of Hawai‘i at Mānoa, 400 pp.

  • USDA, cited 2013: Quick stats: Data and statistics. [Available online at www.nass.usda.gov/Quick_Stats/.]

  • WFP/IFAD, 2011: Weather index-based insurance in agricultural development: A technical guide. International Fund for Agricultural Development, World Food Programme, 61 pp. [Available online at www.ifad.org/ruralfinance/pub/WII_tech_guide.pdf.]

  • WRF, cited 2013: The Weather Research and Forecasting Model. [Available online at www.wrf-model.org/index.php.]

  • Zhang, N., Wang M. , and Wang N. , 2002: Precision agriculture—A worldwide overview. Comput. Electron. Agric., 36, 113132, doi:10.1016/S0168-1699(02)00096-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1435 318 12
PDF Downloads 662 179 13