Study of Snow Dynamics at Subgrid Scale in Semiarid Environments Combining Terrestrial Photography and Data Assimilation Techniques

Rafael Pimentel Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Granada, Granada, Spain

Search for other papers by Rafael Pimentel in
Current site
Google Scholar
PubMed
Close
,
Javier Herrero Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Granada, Granada, Spain

Search for other papers by Javier Herrero in
Current site
Google Scholar
PubMed
Close
,
Yijian Zeng Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Yijian Zeng in
Current site
Google Scholar
PubMed
Close
,
Zhongbo Su Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Zhongbo Su in
Current site
Google Scholar
PubMed
Close
, and
María J. Polo Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Córdoba, Córdoba, Spain

Search for other papers by María J. Polo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow cover simulation is a complex task in mountain regions because of its highly irregular distribution. GIS-based calculations of snowmelt–accumulation models must deal with nonnegligible scale effects below cell size, which may result in unsatisfactory predictions depending on the study scale. Terrestrial photography, whose scales can be adapted to the study problem, is a cost-effective technique, capable of reproducing snow dynamics at subgrid scale. A series of high-frequency images were combined with a mass and energy model to reproduce snow evolution at cell scale (30 m × 30 m) by means of the assimilation of the snow cover fraction observation dataset obtained from terrestrial photography in the Sierra Nevada, southern Spain. The ensemble transform Kalman filter technique is employed. The results show the convenience of adopting a selective depletion curve parameterization depending on the succession of accumulation–melting cycles in the snow season in these highly variable environments. A reduction in the error for snow depth to 50% (from 463.87 to 261.21 mm and from 238.22 to 128.50 mm) is achieved if the appropriate curve is selected.

Corresponding author address: Rafael Pimentel, Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Granada, Edificio CEAMA, Av. del Mediterráneo s/n, 18006 Granada Spain. E-mail: rpimentel@ugr.es

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Abstract

Snow cover simulation is a complex task in mountain regions because of its highly irregular distribution. GIS-based calculations of snowmelt–accumulation models must deal with nonnegligible scale effects below cell size, which may result in unsatisfactory predictions depending on the study scale. Terrestrial photography, whose scales can be adapted to the study problem, is a cost-effective technique, capable of reproducing snow dynamics at subgrid scale. A series of high-frequency images were combined with a mass and energy model to reproduce snow evolution at cell scale (30 m × 30 m) by means of the assimilation of the snow cover fraction observation dataset obtained from terrestrial photography in the Sierra Nevada, southern Spain. The ensemble transform Kalman filter technique is employed. The results show the convenience of adopting a selective depletion curve parameterization depending on the succession of accumulation–melting cycles in the snow season in these highly variable environments. A reduction in the error for snow depth to 50% (from 463.87 to 261.21 mm and from 238.22 to 128.50 mm) is achieved if the appropriate curve is selected.

Corresponding author address: Rafael Pimentel, Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Granada, Edificio CEAMA, Av. del Mediterráneo s/n, 18006 Granada Spain. E-mail: rpimentel@ugr.es

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Save
  • Anderson, E. A., 1976: A point energy and mass balance model of snow cover. NOAA Tech. Rep. NWS 19, 150 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/HRL_PUBS_51-100/81_A_POINT_ENERGY_AND_MASS.pdf.]

  • Anderson, R. S., Jiménez-Moreno G. , Carrión J. S. , and Pérez-Martínez C. , 2011: Postglacial history of alpine vegetation, fire and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat. Sci. Rev., 30, 16151629, doi:10.1016/j.quascirev.2011.03.005.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., Etherton B. , and Majumdar S. J. , 2001: Adaptive sampling with ensemble transform Kalman filer. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Search Google Scholar
    • Export Citation
  • Buttle, J. M., and McDonnell J. J. , 1987: Modeling the areal depletion of snowcover in a forested catchment. J. Hydrol., 90, 4360, doi:10.1016/0022-1694(87)90172-7.

    • Search Google Scholar
    • Export Citation
  • Cline, D. W., Bales R. G. , and Dozier J. , 1998: Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Water Resour. Res., 34, 12751285, doi:10.1029/97WR03755.

    • Search Google Scholar
    • Export Citation
  • Corripio, J. G., 2004: Snow surface albedo estimation using terrestrial photography. Int. J. Remote Sens., 25, 57055729, doi:10.1080/01431160410001709002.

    • Search Google Scholar
    • Export Citation
  • Dingman, L., 2002: Physical Hydrology. Prentice Hall, 600 pp.

  • Diodato, N., and Bellocchi G. , 2007: Modeling solar radiation over complex terrain using monthly climatological data. Agric. For. Meteor., 144, 111126, doi:10.1016/j.agrformet.2007.02.001.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Ferguson, R. J., 1984: Magnitude and modeling of snowmelt runoff in the Cairngorm mountains, Scotland. Hydrol. Sci. J., 29, 4962, doi:10.1080/02626668409490921.

    • Search Google Scholar
    • Export Citation
  • Fiume, L., 1989: The Mathematical Structure of Raster Graphics. Academic Press, 221 pp.

  • Foley, J. D., van Dam A. , Feimer S. K. , and Hughes J. F. , 1990: Computer Graphics, Principles and Practice. Addison-Wesley, 1175 pp.

  • Herrero, J., and Polo M. J. , 2012: Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions. Hydrol. Earth Syst. Sci., 16, 31393147, doi:10.5194/hess-16-3139-2012.

    • Search Google Scholar
    • Export Citation
  • Herrero, J., Polo M. J. , Moñino A. , and Losada M. A. , 2009: An energy balance snowmelt model in a Mediterranean site. J. Hydrol., 371, 98107, doi:10.1016/j.jhydrol.2009.03.021.

    • Search Google Scholar
    • Export Citation
  • Herrero, J., Polo M. J. , and Losada M. A. , 2011: Snow evolution in Sierra Nevada (Spain) from an energy balance model validated with Landsat TM data. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, C. M. U. Neale and A. Maltese, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8174), 817403, doi:10.1117/12.898270.

    • Search Google Scholar
    • Export Citation
  • Jordan, R. E., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Jordan, R. E., Andreas E. L , and Makshtas A. P. , 1999: Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res., 104, 77857806, doi:10.1029/1999JC900011.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng.,82, 35–45.

  • Kolberg, S. A., and Gottschalk L. , 2006: Updating of snow depletion curve with remote sensing data. Hydrol. Processes, 20, 23632380, doi:10.1002/hyp.6060.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Rango A. , and Uijlenhoet R. , 1994: A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res., 30, 15151527, doi:10.1029/94WR00152.

    • Search Google Scholar
    • Export Citation
  • Kuusisto, E., 1986: The energy balance of a melting snow cover in different environments. IAHS Publ.,155, 37–45. [Available online at http://iahs.info/uploads/dms/iahs_155_0037.pdf.]

  • Liston, G. E., Pielke R. A. , and Greene E. M. , 1999: Improving first-order snow-related deficiencies in a regional climate model. J. Geophys. Res., 104, 19 55919 567, doi:10.1029/1999JD900055.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., and Tarboton D. G. , 2004: The application of depletion curves for parameterization of subgrid variability of snow. Hydrol. Processes, 18, 14091422, doi:10.1002/hyp.1420.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., Tarboton D. G. , and Cooley K. R. , 1999: Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model. Hydrol. Processes, 13, 19211933, doi:10.1002/(SICI)1099-1085(199909)13:12/13<1921::AID-HYP867>3.0.CO;2-S.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J. B., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Symp. on Math, Statistics, and Probability, Berkeley, CA, University of California, Berkeley, 281297.

  • Malik, M. J., van der Velde R. , Vekerdy Z. , and Su Z. , 2012: Assimilation of satellite-observed snow albedo in a land surface model. J. Hydrometeor., 13, 11191130, doi:10.1175/JHM-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Malik, M. J., van der Velde R. , Vekerdy Z. , and Su Z. , 2014: Improving modeled snow albedo estimates during the spring melting season. J. Geophys. Res. Atmos., 119, 73117331, doi:10.1002/2013JD021344.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and Dozier J. , 1992: Climate and energy exchange at the snow surface in the alpine region of Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, doi:10.1029/92WR01483.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and Winstral A. , 2001: Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin. J. Hydrometeor., 2, 213227, doi:10.1175/1525-7541(2001)002<0213:COSDTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, doi:10.1111/j.1600-0870.2004.00076.x.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Rittger K. , Mckenzie C. , Slaughter P. , Davis R. E. , and Dozier J. , 2009: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113, 868879, doi:10.1016/j.rse.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Pham, D., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pimentel, R., Herrero J. , and Polo M. J. , 2012: Terrestrial photography as an alternative to satellite images to study snow cover evolution at hillslope scale. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, C. M. U. Neale and A. Maltese, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8531), 85310Y, doi:10.1117/12.974419.

  • Reichle, R. H., 2008: Data assimilation methods in the earth sciences. Adv. Water Resour., 31, 14111418, doi:10.1016/j.advwatres.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Rivera, A., Corripio J. G. , Brock B. , Clavero J. , and Wendt J. , 2008: Monitoring ice capped active VolcánVillarrica in southern Chile by mean of terrestrial photography combined with automatic weather stations and GPS. J. Glaciol., 54, 920930, doi:10.3189/002214308787780076.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, W., and Dozier J. , 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res., 32, 115130, doi:10.1029/95WR02718.

    • Search Google Scholar
    • Export Citation
  • Sade, R., Rimmer A. , Litaor M. I. , Shamir E. , and Furman A. , 2014: Snow surface energy and mass balance in a warm temperate climate mountain. J. Hydrol., 519, 848862, doi:10.1016/j.jhydrol.2014.07.048.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., and Oke P. R. , 2008: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 10421052, doi:10.1175/2007MWR2021.1.

    • Search Google Scholar
    • Export Citation
  • Sakov, P., Evensen G. , and Bertino L. , 2010: Asynchronous data assimilation with the EnKF. Tellus, 62A, 2429, doi:10.1111/j.1600-0870.2009.00417.x.

    • Search Google Scholar
    • Export Citation
  • Schulz, O., and de Jong C. , 2004: Snowmelt and sublimation: Field experiments and modelling in the high Atlas Mountains of Morocco. Hydrol. Earth Syst. Sci., 8, 10761089, doi:10.5194/hess-8-1076-2004.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., and Luce C. H. , 1996: Utah Energy Balance Snow Accumulation Melt Model (UEB). Computer model technical description and user’s guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station, 64 pp.

  • Tippett, M. K., Anderson J. L. , Bishop C. H. , Hamill T. M. , and Whitaker J. S. , 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2014: Evaluation of MODIS albedo product (MCD43A) over grassland agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ., 140, 6077, doi:10.1016/j.rse.2013.08.025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 855 249 11
PDF Downloads 197 87 5