Assimilation of Freeze–Thaw Observations into the NASA Catchment Land Surface Model

Leila Farhadi Global Modeling and Assimilation Office, NASA Goddard Flight Center, Greenbelt, Maryland, and Department of Civil and Environmental Engineering, George Washington University, Washington, D.C.

Search for other papers by Leila Farhadi in
Current site
Google Scholar
PubMed
Close
,
Rolf H. Reichle Global Modeling and Assimilation Office, NASA Goddard Flight Center, Greenbelt, Maryland

Search for other papers by Rolf H. Reichle in
Current site
Google Scholar
PubMed
Close
,
Gabriëlle J. M. De Lannoy Global Modeling and Assimilation Office, and Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gabriëlle J. M. De Lannoy in
Current site
Google Scholar
PubMed
Close
, and
John S. Kimball Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, Montana

Search for other papers by John S. Kimball in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.

Corresponding author address: Leila Farhadi, Dept. of Civil and Environmental Engineering, George Washington University, 801 22nd St., NW, Washington, DC 20052. E-mail: lfarhadi@gwu.edu

Abstract

The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.

Corresponding author address: Leila Farhadi, Dept. of Civil and Environmental Engineering, George Washington University, 801 22nd St., NW, Washington, DC 20052. E-mail: lfarhadi@gwu.edu
Save
  • Bartsch, A., Sabel D. , Wagner W. , and Park S.-E. , 2011: Considerations for derivation and use of soil moisture data from active microwave satellites at high latitudes. Proc. 2011 IEEE Geoscience and Remote Sensing Symp., Vancouver, BC, Canada, IEEE, 3132–3135, doi:10.1109/IGARSS.2011.6049882.

  • Bateni, S. M., Huang C. , Margulis S. A. , Podest E. , and McDonald K. , 2013: Feasibility of characterizing snowpack and the freeze–thaw state of underlying soil using multifrequency active/passive microwave data. IEEE Trans. Geosci. Remote Sens., 51, 40854102, doi:10.1109/TGRS.2012.2229466.

    • Search Google Scholar
    • Export Citation
  • Bingham, A. W., and Drinkwater M. R. , 2000: Recent changes in the microwave scattering properties of the Antarctic Ice Sheet. IEEE Trans. Geosci. Remote Sens., 38, 18101820, doi:10.1109/36.851765.

    • Search Google Scholar
    • Export Citation
  • Black, T. A., and Coauthors, 2000: Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett., 27, 12711274, doi:10.1029/1999GL011234.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., Bowling L. C. , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38, 151159, doi:10.1016/S0921-8181(03)00025-0.

    • Search Google Scholar
    • Export Citation
  • Colliander, A., McDonald K. , Zimmermann R. , Schroeder R. , Kimball J. S. , and Njoku E. G. , 2012: Application of QuikSCAT backscatter to SMAP validation planning: Freeze/thaw state over ALECTRA sites in Alaska from 2000 to 2007. IEEE Trans. Geosci. Remote Sens., 50, 461468, doi:10.1109/TGRS.2011.2174368.

    • Search Google Scholar
    • Export Citation
  • Dall, J., Madsen S. N. , Keller K. , and Forsberg R. , 2001: Topography and penetration of the Greenland ice sheet measured with airborne SAR interferometry. Geophys. Res. Lett., 28, 17031706, doi:10.1029/2000GL011787.

    • Search Google Scholar
    • Export Citation
  • Dankers, R., Burke E. J. , and Price J. , 2011: Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme. Cryosphere Discuss., 5, 12631309, doi:10.5194/tcd-5-1263-2011.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., Reichle R. H. , Arsenault K. R. , Houser P. R. , Kumar S. V. , Verhoest N. E. C. , and Pauwels V. R. N. , 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:10.1029/2011WR01058.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res., 105, 24 82324 824, doi:10.1029/2000JD900328.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2014: SMAP handbook. JPL Publ. JPL 400-1567,NASA Jet Propulsion Laboratory, Pasadena, CA, 192 pp. [Available online at http://smap.jpl.nasa.gov/Imperative.]

  • Frolking, S., McDonald K. , Kimball J. , Zimmermann R. , Way J. B. , and Running S. W. , 1999: Using the space-borne NASA Scatterometer (NSCAT) to determine the frozen and thawed seasons of a boreal landscape. J. Geophys. Res., 104, 27 89527 908, doi:10.1029/1998JD200093.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., Munger J. W. , Fan S.-M. , Daube B. C. , and Wofsy S. C. , 1996: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol., 2, 169182, doi:10.1111/j.1365-2486.1996.tb00070.x.

    • Search Google Scholar
    • Export Citation
  • Grippa, M., Kergoat L. , Le Toan T. , Mognard N. M. , Delbart N. , L’Hermitte J. , and Vicente-Serrano S. M. , 2005: The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys. Res. Lett., 32, L21412, doi:10.1029/2005GL024286.

    • Search Google Scholar
    • Export Citation
  • Kane, D. L., Hinzman L. D. , Gieck R. E. , McNamara J. P. , Youcha E. , and Oatley J. A. , 2008: Contrasting extreme runoff events in areas of continuous permafrost, Arctic Alaska. Hydrol. Res., 39, 287298, doi:10.2166/nh.2008.005.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., Kimball J. S. , McDonald K. C. , and Glassy J. , 2011: Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens., 49, 949960, doi:10.1109/TGRS.2010.2070515.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., Kimball J. S. , Zhang K. , and McDonald K. C. , 2012: Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ., 121, 472487, doi:10.1016/j.rse.2012.02.014.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., McDonald K. C. , Keyser A. R. , Frolking S. , and Running S. W. , 2001: Application of the NASA Scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska. Remote Sens. Environ., 75, 113126, doi:10.1016/S0034-4257(00)00160-7.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., McDonald K. C. , Frolking S. , and Running S. W. , 2004a: Radar remote sensing of the spring thaw transition across a boreal landscape. Remote Sens. Environ., 89, 163175, doi:10.1016/j.rse.2002.06.004.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., McDonald K. C. , Running S. W. , and Frolking S. E. , 2004b: Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sens. Environ., 90, 243258, doi:10.1016/j.rse.2004.01.002.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., McDonald K. C. , and Zhao M. , 2006: Spring thaw and its effect on terrestrial vegetation productivity in the western Arctic observed from satellite microwave and optical remote sensing. Earth Interact., 10, doi:10.1175/EI187.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., Reichle R. , O’Neill P. , McDonald K. , and Njoku E. , 2012: SMAP level 4 carbon data product (L4_C). Algorithm Theoretical Basis Doc., Jet Propulsion Laboratory, Pasadena, CA, 73 pp. [Available online at http://nsidc.org/data/smap/pdfs/atbds/l4_c_initrel_v1_filt_10.pdf.]

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res.,105, 24 809–24 822, doi:10.1029/2000JD900327.

  • Koven, C., Friedlingstein P. , Ciais P. , Khvorostyanov D. , Krinner G. , and Tarnocai C. , 2009: On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett., 36, L21501, doi:10.1029/2009GL040150.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., Slater A. G. , Romanovsky V. E. , and Nicolsky D. J. , 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., Oleson K. W. , Flanner M. G. , Fletcher C. G. , Lawrence P. J. , Levis S. , Swenson S. C. , and Bonan G. B. , 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, doi:10.1175/JCLI-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, M., 1994: The development and validation of a simple snow model for the GISS GCM. J. Climate, 7, 18421855, doi:10.1175/1520-0442(1994)007<1842:TDAVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mätzler, C., and Schanda E. , 1984: Snow mapping with active microwave sensors. Remote Sens., 5, 409422, doi:10.1080/01431168408948816.

    • Search Google Scholar
    • Export Citation
  • McDonald, K., Kimball J. S. , Njoku E. , Zimmermann R. , and Zhao M. , 2004: Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact., 8, doi:10.1175/1087-3562(2004)8<1:VISTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDonald, K., Podest E. , Dunbar S. , Njoku E. , and Kimball J. , 2012: SMAP level 3 radar freeze/thaw data product. Algorithm Theoretical Basis Doc., Jet Propulsion Laboratory, Pasadena, CA, 32 pp. [Available online at http://nsidc.org/data/smap/pdfs/atbds/l3_ft_a_initrel_v1_7.pdf.]

  • Mironov, V. L., De Roo R. D. , and Savin I. V. , 2010: Temperature-dependable microwave dielectric model for an arctic soil. IEEE Trans. Geosci. Remote Sens., 48, 25442556, doi:10.1109/TGRS.2010.2040034.

    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., Keeling C. D. , Hashimoto H. , Jolly W. M. , Piper S. C. , Tucker C. J. , Myneni R. B. , and Running S. W. , 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, doi:10.1126/science.1082750.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., Field C. B. , Fung I. Y. , and Tans P. P. , 1999: Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett., 26, 27652768, doi:10.1029/1999GL900500.

    • Search Google Scholar
    • Export Citation
  • Rautiainen, K., Lemmetyinen J. , Pulliainen J. , Vehviläinen J. , Drusch M. , Kontu A. , Kainulainen J. , and Seppänen J. , 2012: L-band radiometer observations of soil processes in boreal and subarctic environments. IEEE Trans. Geosci. Remote Sens., 50, 14831497, doi:10.1109/TGRS.2011.2167755.

    • Search Google Scholar
    • Export Citation
  • Rautiainen, K., and Coauthors, 2014: Detection of soil freezing from L-band passive microwave observations. Remote Sens. Environ., 147, 206218, doi:10.1016/j.rse.2014.03.007.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., McDonald K. C. , Frolking S. , Lammers R. B. , Fahnestock M. , Kimball J. S. , and Vörösmarty C. J. , 2005: Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer. J. Hydrol., 312, 294311, doi:10.1016/j.jhydrol.2004.12.018.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., Nicolsky D. J. , McDonald K. C. , and Romanovsky V. E. , 2013: Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model. J. Adv. Model. Earth Syst., 5, 659675, doi:10.1002/jame.20045.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2012: The MERRA-Land data product (version 1.2). GMAO Office Note 3, NASA GSFC, Greenbelt, MD, 38 pp. [Available at https://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf.]

  • Reichle, R. H., Kumar S. V. , Mahanama S. P. P. , Koster R. D. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, doi:10.1175/2010JHM1262.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. , Forman B. A. , Liu Q. , Mahanama S. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., De Lannoy G. J. M. , Forman B. A. , Draper C. S. , and Liu Q. , 2014: Connecting satellite observations with water cycle variables through land data assimilation: Examples using the NASA GEOS-5 LDAS. Surv. Geophys., 35, 577–606, doi:10.1007/s10712-013-9220-8.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., Echelmeyer K. , and Krabill W. , 2001: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28, 35013504, doi:10.1029/2000GL012484.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Houser P. R. , 2004: Updating a land surface model with MODIS-derived snow cover. J. Hydrometeor., 5, 10641075, doi:10.1175/JHM-395.1.

    • Search Google Scholar
    • Export Citation
  • Smith, N. V., Saatchi S. S. , and Randerson J. T. , 2004: Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res., 109, D12101, doi:10.1029/2003JD004472.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Derksen C. , and Brown R. , 2013: Recent changes in pan-Arctic melt onset from satellite passive microwave measurements. Geophys. Res. Lett., 40, 522528, doi:10.1002/grl.50098.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Kimball J. S. , Kim Y. , and McDonald K. C. , 2011: Changing freeze–thaw seasons in northern high latitudes and associated influences on evapotranspiration. Hydrol. Processes, 25, 41424151, doi:10.1002/hyp.8350.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and Armstrong R. L. , 2001: Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett., 28, 763766, doi:10.1029/2000GL011952.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., Zhang L. , Jiang L. , Zhao S. , Chai L. , and Jin R. , 2011: A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol. Processes, 25, 17041716, doi:10.1002/hyp.7930.

    • Search Google Scholar
    • Export Citation
  • Zuerndorfer, B., and England A. W. , 1992: Radio brightness decision criteria for freeze/thaw boundaries. IEEE Trans. Geosci. Remote Sens., 30, 89102, doi:10.1109/36.124219.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 953 217 18
PDF Downloads 193 62 8