Cross Validation of TRMM PR Reflectivity Profiles Using 3D Reflectivity Composite from the Ground-Based Radar Network over the Korean Peninsula

Shinju Park Research and Training Team for Future Creative Astrophysicists and Cosmologists, Center for Atmospheric Remote Sensing, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, South Korea

Search for other papers by Shinju Park in
Current site
Google Scholar
PubMed
Close
,
Sung-Hwa Jung Research and Training Team for Future Creative Astrophysicists and Cosmologists, Center for Atmospheric Remote Sensing, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, South Korea

Search for other papers by Sung-Hwa Jung in
Current site
Google Scholar
PubMed
Close
, and
GyuWon Lee Research and Training Team for Future Creative Astrophysicists and Cosmologists, Center for Atmospheric Remote Sensing, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu, South Korea

Search for other papers by GyuWon Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measures reflectivity downward from space and provides observations of the vertical distributions of precipitation over land as well as the ocean. It overpasses the southern part of the Korean Peninsula where (i) a dense network of operational S-band scanning radars is available and (ii) various types of precipitation occur. By utilizing a 3D reflectivity composite from the ground S-band radar (GR) observations, this paper shows a comparison of reflectivity profiles observed with both PR and GR focusing on their vertical structure. For four cases of widespread rain, visual and statistical analyses show that PR attenuation-corrected reflectivity agrees closely with reflectivity observed from the GR composite below the melting layer. Above and within the melting layer, PR is affected critically by its sensitivity while GR beam broadening at far ranges causes systematic differences in the PR–GR comparisons. For four cases of convective rain, PR underestimates the mean reflectivities by 1–3 dB compared with those from GR at low levels where precipitation attenuation is significant toward the ground. In these cases, the low sensitivity of PR results in a small number of matched points for weak echoes. Also, the PR–GR discrepancy for the convective case is more affected by time mismatching.

Corresponding author address: GyuWon Lee, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, South Korea.E-mail: gyuwon@knu.ac.kr

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measures reflectivity downward from space and provides observations of the vertical distributions of precipitation over land as well as the ocean. It overpasses the southern part of the Korean Peninsula where (i) a dense network of operational S-band scanning radars is available and (ii) various types of precipitation occur. By utilizing a 3D reflectivity composite from the ground S-band radar (GR) observations, this paper shows a comparison of reflectivity profiles observed with both PR and GR focusing on their vertical structure. For four cases of widespread rain, visual and statistical analyses show that PR attenuation-corrected reflectivity agrees closely with reflectivity observed from the GR composite below the melting layer. Above and within the melting layer, PR is affected critically by its sensitivity while GR beam broadening at far ranges causes systematic differences in the PR–GR comparisons. For four cases of convective rain, PR underestimates the mean reflectivities by 1–3 dB compared with those from GR at low levels where precipitation attenuation is significant toward the ground. In these cases, the low sensitivity of PR results in a small number of matched points for weak echoes. Also, the PR–GR discrepancy for the convective case is more affected by time mismatching.

Corresponding author address: GyuWon Lee, Department of Astronomy and Atmospheric Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, South Korea.E-mail: gyuwon@knu.ac.kr
Save
  • Amitai, E., Llort X. , and Sempere-Torres D. , 2009: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE. J. Meteor. Soc. Japan, 87A, 109118, doi:10.2151/jmsj.87A.109.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. S., Morales C. A. , and Dinku T. , 2001: The use of TRMM Precipitation Radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18, 616628, doi:10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., Lee G. , and Zawadzki I. , 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44, 9981015, doi:10.1175/JAM2253.1.

    • Search Google Scholar
    • Export Citation
  • Bolen, S., and Chandrasekar V. , 2000: Quantitative cross validation of space-based and ground-based radar observations. J. Appl. Meteor., 39, 20712079, doi:10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Hong Y. , Qi Y. , Wen Y. , Zhang J. , Gourley J. J. , and Liao L. , 2013: Empirical conversion of vertical profile of reflectivity from Ku-band to S-band frequency. J. Geophys. Res. Atmos., 118, 18141825, doi:10.1002/jgrd.50138.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation of spatial errors of precipitation rates and types from TRMM spaceborne radar over the southern CONUS. J. Hydrometeor., 14, 18841896, doi:10.1175/JHM-D-13-027.1.

    • Search Google Scholar
    • Export Citation
  • Cho, Y.-H., Lee G. W. , Kim K.-E. , and Zawadzki I. , 2006: Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J. Atmos. Oceanic Technol., 23, 12061222, doi:10.1175/JTECH1913.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations.2nd ed. Dover Publications, 562 pp.

  • Gabella, M., Joss J. , Perona G. , and Michaelides S. , 2006: Range adjustment for ground-based radar, derived with the spaceborne TRMM Precipitation Radar. IEEE Trans. Geosci. Remote Sens., 44, 126133, doi:10.1109/TGRS.2005.858436.

    • Search Google Scholar
    • Export Citation
  • GAMIC, 2008: ENIGMA 3+ theory of operation. GAMIC mbH, 84 pp.

  • Heymsfield, G. M., Geerts B. , and Tian L. , 2000: TRMM Precipitation Radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteor., 39, 20802102, doi:10.1175/1520-0450(2001)040<2080:TPRRPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, doi:10.1175/JHM-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., Andrieu H. , Delrieu G. , and Boudevillain B. , 2013: A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl Meteor. Climatol., 52, 16451663, doi:10.1175/JAMC-D-12-0228.1.

    • Search Google Scholar
    • Export Citation
  • Langston, C., Zhang J. , and Howard K. , 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2006: Radar calibration by gage, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol., 328, 8397, doi:10.1016/j.jhydrol.2005.11.046.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and Meneghini R. , 2009: Validation of TRMM Precipitation Radar through comparison of its multiyear measurements with ground-based radar. J. Appl. Meteor. Climatol., 48, 804817, doi:10.1175/2008JAMC1974.1.

    • Search Google Scholar
    • Export Citation
  • Liao, L., Meneghini R. , and Iguchi T. , 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, doi:10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Jones J. A. , Iguchi T. , Okamoto K. , and Kwiatkowski J. , 2004: A hybrid surface reference technique and its application to the TRMM Precipitation Radar. J. Atmos. Oceanic Technol., 21, 16451658, doi:10.1175/JTECH1664.1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., and Lee G. , 2010: Calibration of radar reflectivity measurements form KMA operational radar network. Asia–Pac. J. Atmos. Sci., 46, 243259, doi:10.1007/s13143-010-1010-3.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein ocean validation site. J. Appl. Meteor., 39, 21512164, doi:10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwaller, M. R., and Morris K. R. , 2011: A ground validation network for the global precipitation measurement mission. J. Atmos. Oceanic Technol., 28, 301319, doi:10.1175/2010JTECHA1403.1.

    • Search Google Scholar
    • Export Citation
  • Siggia, A., and Passarelli R. , 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proceedings of ERAD (2004), Copernicus GmBH, 67–73. [Available online at http://copernicus.org/erad/2004/online/ERAD04_P_67.pdf.]

  • TRMM Precipitation Radar Team, 2011: Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar algorithm: Instruction manual for version 7. JAXA/NASA, 170 pp. [Available online at www.eorc.jaxa.jp/TRMM/documents/PR_algorithm_product_information/pr_manual/PR_Instruction_Manual_V7_L1.pdf.]

  • Wang, J., and Wolff D. , 2009: Comparisons of reflectivities from the TRMM Precipitation Radar and ground-based radars. J. Atmos. Oceanic Technol., 26, 857875, doi:10.1175/2008JTECHA1175.1.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., Hong Y. , Zhang G. , Schuur T. J. , Gourley J. J. , Flamig Z. , Morris K. R. , and Cao O. , 2011: Cross validation of spaceborne radar and ground polarimetric radar aided by polarimetric echo classification of hydrometeor types. J. Appl Meteor. Climatol., 50, 13891402, doi:10.1175/2011JAMC2622.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and Houze R. A. Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Howard K. , and Gourley J. J. , 2005: Three-dimensional multiple radar reflectivity mosaic. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 476 85 5
PDF Downloads 230 60 2