An Object-Oriented Approach to Investigate Impacts of Climate Oscillations on Precipitation: A Western United States Case Study

Scott Lee Sellars Center for Hydrometeorology and Remote Sensing, University of California, Irvine, Irvine, California

Search for other papers by Scott Lee Sellars in
Current site
Google Scholar
PubMed
Close
,
Xiaogang Gao Center for Hydrometeorology and Remote Sensing, University of California, Irvine, Irvine, California

Search for other papers by Xiaogang Gao in
Current site
Google Scholar
PubMed
Close
, and
Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This manuscript introduces a novel computational science approach for studying the impact of climate variability on precipitation. The approach uses an object-oriented connectivity algorithm that segments gridded near-global satellite precipitation data into four-dimensional (4D) objects (longitude, latitude, time, and intensity). These precipitation systems have distinct spatiotemporal properties that are counted, tracked, described, and stored in a searchable database. A case study of western United States precipitation systems is performed, demonstrating the unique properties and capabilities of this object-oriented database. The precipitation dataset used in the case study is the University of California, Irvine, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) from 1 March 2000 to 1 January 2011. A search of the database for all western United States precipitation systems during this time period returns 626 precipitation systems as objects. By analyzing these systems as segmented objects, joint interactions of the selected climate phenomena 1) Arctic Oscillation (AO), 2) Madden–Julian oscillation (MJO), and 3) El Niño–Southern Oscillation (ENSO) on precipitation can be shown. They directly show the increased/decreased likelihood of having precipitation systems occurring over the western United States (monthly count) during phases of these climate phenomena. It is found that specific climate phenomena impact the monthly count of the events differently, and that the joint interaction of climate phenomena of the AO–MJO and AO–ENSO is important, especially during certain months of the year. It is also found that these interactions impact the physical features of the precipitation systems themselves.

Corresponding author address: Scott Sellars, Henry Samueli School of Engineering, Dept. of Civil and Environmental Engineering, ZotCode 2175, University of California, Irvine, Irvine, CA 92697. E-mail: scott.sellars@uci.edu

Abstract

This manuscript introduces a novel computational science approach for studying the impact of climate variability on precipitation. The approach uses an object-oriented connectivity algorithm that segments gridded near-global satellite precipitation data into four-dimensional (4D) objects (longitude, latitude, time, and intensity). These precipitation systems have distinct spatiotemporal properties that are counted, tracked, described, and stored in a searchable database. A case study of western United States precipitation systems is performed, demonstrating the unique properties and capabilities of this object-oriented database. The precipitation dataset used in the case study is the University of California, Irvine, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) from 1 March 2000 to 1 January 2011. A search of the database for all western United States precipitation systems during this time period returns 626 precipitation systems as objects. By analyzing these systems as segmented objects, joint interactions of the selected climate phenomena 1) Arctic Oscillation (AO), 2) Madden–Julian oscillation (MJO), and 3) El Niño–Southern Oscillation (ENSO) on precipitation can be shown. They directly show the increased/decreased likelihood of having precipitation systems occurring over the western United States (monthly count) during phases of these climate phenomena. It is found that specific climate phenomena impact the monthly count of the events differently, and that the joint interaction of climate phenomena of the AO–MJO and AO–ENSO is important, especially during certain months of the year. It is also found that these interactions impact the physical features of the precipitation systems themselves.

Corresponding author address: Scott Sellars, Henry Samueli School of Engineering, Dept. of Civil and Environmental Engineering, ZotCode 2175, University of California, Irvine, Irvine, CA 92697. E-mail: scott.sellars@uci.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Nasrollahi N. , Li J. , Imam B. , and Sorooshian S. , 2011: Geometrical Characterization of precipitation patterns. J. Hydrometeor., 12, 274285, doi:10.1175/2010JHM1298.1.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., Nigam S. , and Berbery E. H. , 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Livezey R. , 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Chelliah M. , and Goldenberg S. B. , 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., Bullock R. R. , Davis C. A. , Gotway J. H. , Chapman M. B. , Takacs A. , Gilleland E. , and Manning K. , 2004: New verification approaches for convective weather forecasts. 11th Conf. on Aviation, Range and Aerospace Meteorology, Amer. Meteor. Soc., Hyannis, MA, 9.4. [Available online at https://ams.confex.com/ams/pdfpapers/82068.pdf.]

  • Brown, C., and Coauthors, 2010: Managing climate risk in water supply systems. IRI Tech. Rep. 1015, International Research Institute for Climate and Society, 133 pp. [Available online at http://iri.columbia.edu/docs/publications/TR10-15WaterCRK_final_web.pdf.]

  • Cane, M. A., 2005: The evolution of El Niño, past and future. Earth Planet. Sci. Lett., 230, 227240, doi:10.1016/j.epsl.2004.12.003.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., Redmond K. , and Riddle L. , 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Kain J. S. , Marsh P. T. , Correia J. , Xue M. , and Kong F. , 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Bullock R. G. , Jensen T. L. , Xue M. , and Kong F. , 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517–542, doi:10.1175/WAF-D-13-00098.1.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., Woodhouse C. , Eakin M. , Meko D. , and Stahle D. , 2004: Long-term aridity changes in the western United States. Science, 306, 10151018, doi:10.1126/science.1102586.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., Seager R. , Cane M. A. , and Stahle D. W. , 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93134, doi:10.1016/j.earscirev.2006.12.002.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. G. , Bullock R. , and Halley-Gotway J. , 2009: The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, doi:10.1175/2009WAF2222241.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Dracup, J. A., and Kahya E. , 1994: The relationships between U.S. streamflow and La Niña events. Water Resour. Res., 30, 21332141, doi:10.1029/94WR00751.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., and Gallus W. A. Jr., 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 14011415, doi:10.1175/2009WAF2222252.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., and Coauthors, 2013: Progress and challenges in forecast verification. Meteor. Appl., 20, 130139, doi:10.1002/met.1392.

  • Gilleland, E., Ahijevych D. A. , Brown B. G. , and Ebert E. E. , 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 13651373, doi:10.1175/2010BAMS2819.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Waliser D. E. , Molotch N. P. , Fetzer E. J. , and Neiman P. J. , 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, doi:10.1175/MWR-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., Pagano T. C. , Sorooshian S. , and Bales R. , 2002: Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bull. Amer. Meteor. Soc., 83, 683698, doi:10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Janowiak J. , and Yao Y. , 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, 47 pp.

  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

  • Hong, Y., Hsu K.-L. , Sorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. , Cheng J.-t. , Hsu K.-l. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., and Sorooshian S. , 2008: Satellite-based precipitation measurement using PERSIANN system. Hydrological Modelling and the Water Cycle, S. Sorooshian et al., Eds., Water Science and Technology Library, Vol. 63, Springer, 27–48, doi:10.1007/978-3-540-77843-1_2.

  • Hsu, K., Gao X. , and Sorooshian S. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Sellars S. , Nguyen P. , Braithwaite D. , and Chu W. , 2013: G-WADI PERSIANN-CCS GeoServer for extreme event analysis. Sci. Cold Arid Reg., 5 (1), 615.

    • Search Google Scholar
    • Export Citation
  • Igel, M. R., Drager A. J. , and Heever S. C. , 2014: A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature. J. Geophys. Res. Atmos., 119, 10 51510 535, doi:10.1002/2014JD021717.

    • Search Google Scholar
    • Export Citation
  • Jiang, T., and Deng Y. , 2011: Downstream modulation of North Pacific atmospheric river activity by East Asian cold surges. Geophys. Res. Lett., 38, L20807, doi:10.1029/2011GL049462.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2006: Rivers in the sky are flooding the world with tropical waters. Science, 313, 435, doi:10.1126/science.313.5786.435.

  • L’Heureux, M. L., and Higgins R. W. , 2008: Boreal winter links between the Madden–Julian oscillation and the arctic oscillation. J. Climate, 21, 30403050, doi:10.1175/2007JCLI1955.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Thompson D. W. J. , 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Julian P. R. , 1994: Observations of the 4050-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mann, M., and Bradley R. , 2000: Long-term variability in the El Niño/Southern Oscillation and associated teleconnections. El Niño and the Southern Oscillation: Multiscale Variability and Its Impacts on Natural Ecosystems and Society, H. Diaz and V. Markgraf, Eds., Cambridge University Press, 321–372.

  • McCabe, G. J., and Dettinger M. D. , 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410, doi:10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and Dettinger M. D. , 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325, doi:10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., Palecki M. A. , and Betancourt J. L. , 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P., and Bullock R. , 2013: Using MODE to explore the spatial and temporal characteristics of cloud cover forecasts from high-resolution NWP models. Meteor. Appl., 20, 187196, doi:10.1002/met.1393.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and Wick G. , 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133, 11991223, doi:10.1175/MWR2919.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. , Lundquist J. D. , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Moore B. J. , Hughes M. , Mahoney K. M. , Cordeira J. M. , and Dettinger M. D. , 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • NOAA, cited 2013: Climate indices: Monthly atmospheric and ocean time series. [Available online at www.esrl.noaa.gov/psd/data/climateindices/.]

  • Pagano, T. C., Hartmann H. C. , and Sorooshian S. , 2001: Using climate forecasts for water management: Arizona and the 1997–1998 El Niño. J. Amer. Water Resour. Assoc., 37, 11391153, doi:10.1111/j.1752-1688.2001.tb03628.x.

    • Search Google Scholar
    • Export Citation
  • Pagano, T. C., Garen D. , and Sorooshian S. , 2004: Evaluation of official western U.S. seasonal water supply outlooks, 1922–2002. J. Hydrometeor., 5, 896909, doi:10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickmann K. , and Reynolds D. W. , 2011: A multiscale observational case study of a Pacific Atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and Koch R. W. , 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399, doi:10.1029/91WR00690.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Harnik N. , Robinson W. A. , Kushnir Y. , Ting M. , Huang H.-P. , and Velez J. , 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, doi:10.1256/qj.04.96.

    • Search Google Scholar
    • Export Citation
  • Sellars, S., Nguyen P. , Chu W. , Gao X. , Hsu K.-l. , and Sorooshian S. , 2013: Computational Earth science: Big data transformed into insight. Eos, Trans. Amer. Geophys. Union, 94, 277278, doi:10.1002/2013EO320001.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , and Xiaogang G. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Nguyen P. , Sellars S. , Braithwaite D. , AghaKouchak A. , and Hsu K. , 2014: Satellite-based remote sensing estimation of precipitation for early warning systems. Extreme Natural Hazards, Disaster Risks and Societal Implications, A. Ismail-Zadeh et al., Eds., Special Publications of the International Union of Geodesy and Geophysics, Vol. 1, Cambridge University Press, 99–112, doi:10.1017/CBO9781139523905.011.

  • Thompson, D. W. J., Wallace J. M. , and Hegerl G. C. , 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and Hendon H. H. , 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, A., and Werner K. , 2011: Development of a seasonal climate and streamflow forecasting testbed for the Colorado River basin. 36th NOAA Annual Climate Diagnostics and Prediction Workshop, Fort Worth, TX, NOAA, 101–105.

  • Zhu, Y., and Newell R. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2289 711 17
PDF Downloads 331 104 16