A Note on Soil Moisture Memory and Interactions with Surface Climate for Different Vegetation Types in the La Plata Basin

Anna A. Sörensson Centro de Investigaciones del Mar y la Atmósfera, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos Aires, UMI IFAECI/CNRS, Buenos Aires, Argentina

Search for other papers by Anna A. Sörensson in
Current site
Google Scholar
PubMed
Close
and
Ernesto Hugo Berbery Cooperative Institute for Climate and Satellites–Maryland, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Ernesto Hugo Berbery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata basin in South America. WRF–Noah simulations covering multiple cases during a 2-yr period are designed to emphasize the conceptual nature of the simulations at the expense of the statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for savanna, grassland, and cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with evergreen broadleaf forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees Celsius during the dry season in cases when 1) the soil is much wetter in the reanalysis than in the WRF–Noah equilibrium soil moisture and 2) the memory of the initial value is long because of scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

Corresponding author address: Anna A. Sörensson, CIMA (CONICET-UBA), Piso 2, Pabellón 2, Ciudad Universitaria, Int. Guiraldes 2160, C1428EGA Buenos Aires, Argentina. E-mail: sorensson@cima.fcen.uba.ar

Abstract

This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata basin in South America. WRF–Noah simulations covering multiple cases during a 2-yr period are designed to emphasize the conceptual nature of the simulations at the expense of the statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for savanna, grassland, and cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with evergreen broadleaf forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees Celsius during the dry season in cases when 1) the soil is much wetter in the reanalysis than in the WRF–Noah equilibrium soil moisture and 2) the memory of the initial value is long because of scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

Corresponding author address: Anna A. Sörensson, CIMA (CONICET-UBA), Piso 2, Pabellón 2, Ciudad Universitaria, Int. Guiraldes 2160, C1428EGA Buenos Aires, Argentina. E-mail: sorensson@cima.fcen.uba.ar
Save
  • Alexandru, A., de Elía R. , Laprise R. , Separovic L. , and Biner S. , 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 16661686, doi:10.1175/2008MWR2620.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., Hardy E. E. , Roach J. T. , and Witmer R. E. , 1976: A land use and land cover classification system for use with remote sensor data. USGS Professional Paper 964, 28 pp. [Available online at http://pubs.usgs.gov/pp/0964/report.pdf.]

  • Barreiro, M., and Díaz N. , 2011: Land–atmosphere coupling in El Niño influence over South America. Atmos. Sci. Lett., 12, 351355, doi:10.1002/asl.348.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and Kalthoff N. , 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 29712987, doi:10.1175/JAS-D-11-027.1.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Barros V. R. , 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, doi:10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., Luo Y. , Mitchell K. E. , and Betts A. K. , 2003: Eta Model estimated land surface processes and hydrologic cycle of the Mississippi basin. J. Geophys. Res., 108, 8852, doi:10.1029/2002JD003192.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Viterbo P. , 2005: Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40. J. Geophys. Res., 110, D14108, doi:10.1029/2004JD005702.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Viterbo P. , Beljaars A. , Pan H.-L. , Hong S.-Y. , Goulden M. , and Wofsy S. , 1998: Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS). J. Geophys. Res.,103, 23 079–23 085, doi:10.1029/98JD02023.

  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res.,101, 7251–7268, doi:10.1029/95JD02165.

  • Chen, F., Janjić Z. , and Mitchell K. , 1997: Impact of atmospheric-surface layer parameterizations in the new land surface scheme of the NCEP mesoscale Eta numerical model. Bound.-Layer Meteor., 85, 391421, doi:10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Collini, E. A., Berbery E. H. , Barros V. R. , and Pyle M. E. , 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195213, doi:10.1175/2007JCLI1846.1.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, 8845, doi:10.1029/2002JD003316.

  • de Elía, R., Laprise R. , and Denis B. , 2002: Forecasting skill limits of nested, limited-area models: A perfect-model approach. Mon. Wea. Rev., 130, 20062023, doi:10.1175/1520-0493(2002)130<2006:FSLONL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Denis, B., Laprise R. , Caya D. , and Côté J. , 2002: Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Climate Dyn., 18, 627646, doi:10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 29002922, doi:10.1175/1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Brubaker K. L. , 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, doi:10.1175/JHM557.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res.,108, 8851, doi:10.1029/2002JD003296.

  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16, 263280, doi:10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. , Yang R. , Dirmeyer P. A. , Mitchell K. , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666, doi:10.1016/j.jcp.2006.10.024.

  • Lee, S.-J., and Berbery E. H. , 2012: Land cover change effects on the climate of the La Plata Basin. J. Hydrometeor., 13, 84102, doi:10.1175/JHM-D-11-021.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., Robock A. , Liu S. , Mo X. , and Viterbo P. , 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180193, doi:10.1175/JHM416.1.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 1–21, doi:10.1002/joc.2254.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 12271246, doi:10.1175/JCLI3369.1.

    • Search Google Scholar
    • Export Citation
  • Müller, O. V., Berbery E. H. , Alcaraz-Segura D. , and Ek M. , 2014: Regional model simulations of the 2008 drought in southern South America using a consistent set of land surface properties. J. Climate, 27, 67546778, doi:10.1175/JCLI-D-13-00463.1.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and Coauthors, 2002: Progress in Pan American CLIVAR research: Understanding the South American monsoon. Meteorologica, 27, 332.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and Crétat J. , 2014: On the use of nudging techniques for regional climate modeling: Application for tropical convection. Climate Dyn., 43, 16931714, doi:10.1007/s00382-013-1994-3.

    • Search Google Scholar
    • Export Citation
  • Radu, R., Déqué M. , and Somot S. , 2008: Spectral nudging in a spectral regional climate model. Tellus, 60A, 898910, doi:10.1111/j.1600-0870.2008.00341.x.

    • Search Google Scholar
    • Export Citation
  • Roads, J., and Betts A. , 2000: NCEP–NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J. Hydrometeor., 1, 8894, doi:10.1175/1525-7541(2000)001<0088:NNAERS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155, doi:10.1175/JHM414.1.

    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., Sörensson A. A. , and Menéndez C. G. , 2014: Hydrological links in southeastern South America: Soil moisture memory and coupling within a hot spot. Int. J. Climatol., 34, 36413653, doi:10.1002/joc.3930.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res.,101, 7461–7475, doi:10.1029/95JD02892.

  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seth, A., and Giorgi F. , 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 26982712, doi:10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and Menéndez C. G. , 2011: Summer soil–precipitation coupling in South America. Tellus, 63A, 5668, doi:10.1111/j.1600-0870.2010.00468.x.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., Menéndez C. G. , Samuelsson P. , and Hansson U. , 2010: Soil–precipitation feedbacks during the South American monsoon as simulated by a regional climate model. Climatic Change, 98, 429447, doi:10.1007/s10584-009-9740-x.

    • Search Google Scholar
    • Export Citation
  • Trier, S., Chen F. , Manning K. , LeMone M. A. , and Davis C. , 2008: Sensitivity of the simulated PBL and precipitation to land surface conditions for a 12-day warm-season convection period in the central United States. Mon. Wea. Rev., 136, 23212343, doi:10.1175/2007MWR2289.1.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Kim Y. , and Wang D. , 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570, doi:10.1175/JHM573.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and Dirmeyer P. A. , 2012: Dissecting soil moisture–precipitation coupling. Geophys. Res. Lett., 39, L19711, doi:10.1029/2012GL053038.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Dirmeyer P. A. , and Guo Z. , 2010: How much do different land models matter for climate simulation? Part II: A decomposed view of the land–atmosphere coupling strength. J. Climate, 23, 31353145, doi:10.1175/2010JCLI3178.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., Dickinson R. E. , Henderson-Sellers A. , and Pitman A. J. , 1995: Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res., 100, 16 55316 578, doi:10.1029/95JD01076.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Wang W.-C. , and Leung L. R. , 2008: Contribution of land–atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Dirmeyer P. A. , Wei J. , Guo Z. , and Lu C.-H. , 2011: Land–atmosphere coupling strength in the Global Forecast System. J. Hydrometeor., 12, 147156, doi:10.1175/2010JHM1319.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., and Lau K. M. , 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 110 8
PDF Downloads 240 66 4