Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts

Pablo A. Mendoza Department of Civil, Environmental, and Architectural Engineering, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Pablo A. Mendoza in
Current site
Google Scholar
PubMed
Close
,
Martyn P. Clark Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
,
Naoki Mizukami Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Naoki Mizukami in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Newman Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Andrew J. Newman in
Current site
Google Scholar
PubMed
Close
,
Michael Barlage Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Michael Barlage in
Current site
Google Scholar
PubMed
Close
,
Ethan D. Gutmann Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Ethan D. Gutmann in
Current site
Google Scholar
PubMed
Close
,
Roy M. Rasmussen Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Balaji Rajagopalan Department of Civil, Environmental, and Architectural Engineering, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Balaji Rajagopalan in
Current site
Google Scholar
PubMed
Close
,
Levi D. Brekke Bureau of Reclamation, Denver, Colorado

Search for other papers by Levi D. Brekke in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey R. Arnold U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey R. Arnold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Pablo A. Mendoza, Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, CO 80309. E-mail: pmendoza@colorado.edu

Abstract

The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Pablo A. Mendoza, Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, CO 80309. E-mail: pmendoza@colorado.edu
Save
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Bergström, S., Carlsson B. , Gardelin M. , Lindstrom G. , Petterson A. , and Rummukainen M. , 2001: Climate change impacts on runoff in Sweden—assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Res., 16, 101112, doi:10.3354/cr016101.

    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., Maurer E. P. , Anderson J. D. , Dettinger M. D. , Townsley E. S. , Harrison A. , and Pruitt T. , 2009: Assessing reservoir operations risk under climate change. Water Resour. Res.,45, W04411, doi:10.1029/2008WR006941.

  • Bureau of Reclamation, 2012: Colorado River basin water supply and demand study: Technical report B—Water supply assessment. Tech. Rep., 103 pp.

  • Cai, X., Yang Z.-L. , David C. H. , Niu G.-Y. , and Rodell M. , 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos., 119, 2338, doi:10.1002/2013JD020792.

    • Search Google Scholar
    • Export Citation
  • Casper, M. C., Grigoryan G. , Gronz O. , Gutjahr O. , Heinemann G. , Ley R. , and Rock A. , 2012: Analysis of projected hydrological behavior of catchments based on signature indices. Hydrol. Earth Syst. Sci.,16, 409–421, doi:10.5194/hess-16-409-2012.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Poulin A. , and Leconte R. , 2011: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., and Lettenmaier D. P. , 2007: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434, doi:10.5194/hess-11-1417-2007.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., Sorooshian S. , and Gupta V. , 1992: Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour. Res., 28, 10151031, doi:10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., Gupta V. K. , and Sorooshian S. , 1993: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl., 76, 501521, doi:10.1007/BF00939380.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens., 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Schaphoff S. , Haberlandt U. , Lucht W. , and Sitch S. , 2004: Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol., 286, 249270, doi:10.1016/j.jhydrol.2003.09.029.

    • Search Google Scholar
    • Export Citation
  • Graham, L. P., Andréasson J. , and Carlsson B. , 2007: Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Climate Change, 81, 293307, doi:10.1007/s10584-006-9215-2.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Rasmussen R. M. , Liu C. , Ikeda K. , Gochis D. J. , Clark M. P. , Dudhia J. , and Thompson G. , 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281, doi:10.1175/2011JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Pruitt T. , Clark M. P. , Brekke L. , Arnold J. R. , Raff D. A. , and Rasmussen R. M. , 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 7167–7186, doi:10.1002/2014WR015559.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Matheussen B. V. , and Lettenmaier D. P. , 2002: Influence of spatial resolution on simulated streamflow in a macroscale hydrologic model. Water Resour. Res., 38, 1124, doi:10.1029/2001WR000854.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., DeFries R. S. , Townshend J. R. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hara, M., Yoshikane T. , Kawase H. , and Kimura F. , 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett.,2, 61–64, doi:10.3178/hrl.2.61.

  • Hay, L. E., and Clark M. P. , 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675, doi:10.1016/S0022-1694(03)00252-X.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., Clark M. P. , Wilby R. , Gutowski W. J. Jr., Leavesley G. H. , Pan Z. , Arritt R. W. , and Takle E. S. , 2002: Use of regional climate model output for hydrologic simulations. J. Hydrometeor., 3, 571590, doi:10.1175/1525-7541(2002)003<0571:UORCMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Eischeid J. , 2007: Past peak water in the southwest. Southwest Hydrol., 6, 1819. [Available online at www.swhydro.arizona.edu/archive/V6_N1/feature2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., Lettenmaier D. , Cayan D. , and Udall B. , 2009: Reconciling projections of Colorado River streamflow. Southwest Hydrol., 8, 2021. [Available online at www.swhydro.arizona.edu/archive/V8_N3/feature2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Jensen, M., Rob D. , and Franzoy C. , 1970: Scheduling irrigations using climate–crop–soil data. J. Irrig. Drain. Div.,96, 25–38.

  • Jiang, T., Chen Y. D. , Xu C. , Chen X. , Chen X. , and Singh V. P. , 2007: Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang basin, south China. J. Hydrol., 336, 316333, doi:10.1016/j.jhydrol.2007.01.010.

    • Search Google Scholar
    • Export Citation
  • Jones, R. N., Chiew F. H. S. , Boughton W. C. , and Zhang L. , 2006: Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour., 29, 14191429, doi:10.1016/j.advwatres.2005.11.001.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Kawase, H., Yoshikane T. , Hara M. , Kimura F. , Yasunari T. , Ailikun B. , Ueda H. , and Inoue T. , 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.

    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., and Stannard L. G. , 1995: The precipitation–runoff modeling system-PRMS. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 281310.

  • Leavesley, G. H., Lichty R. W. , Troutman B. M. , and Saindon L. G. , 1983: Precipitation–runoff modeling system: User’s manual. Water-Resources Investigations Rep. 83-4238, 206 pp. [Available online at http://pubs.usgs.gov/wri/1983/4238/report.pdf.]

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res.,99, 14 415–14 428, doi:10.1029/94JD00483.

  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change,13, 195–206, doi:10.1016/0921-8181(95)00046-1.

  • Markstrom, S. L., Niswonger R. G. , Regan R. S. , Prudic D. E. , and Barlow P. M. , 2008: GSFLOW—Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). USGS Techniques and Methods 6-01, 240 pp.

  • Mastin, M. C., Chase K. J. , and Dudley R. W. , 2011: Changes in spring snowpack for selected basins in the United States for different climate-change scenarios. Earth Interact., 15, doi:10.1175/2010EI368.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., and Piechota T. C. , 2008: Regional analysis of trend and step changes observed in hydroclimatic variables around the Colorado River basin. J. Hydrometeor., 9, 10201034, doi:10.1175/2008JHM988.1.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., and Piechota T. C. , 2011: Trends in western U.S. snowpack and related upper Colorado River basin streamflow. J. Amer. Water Resour. Assoc., 47, 11971210, doi:10.1111/j.1752-1688.2011.00565.x.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., Piechota T. C. , Gangopadhyay S. , and Pruitt T. , 2011: Development of streamflow projections under changing climate conditions over Colorado River basin headwaters. Hydrol. Earth Syst. Sci., 15, 21452164, doi:10.5194/hess-15-2145-2011.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., Butler R. A. , Piechota T. , Prairie J. , Grantz K. , and DeRosa G. , 2012: Water management decisions using multiple hydrologic models within the San Juan River basin under changing climate conditions. J. Water Resour. Plann. Manag., 138, 412420, doi:10.1061/(ASCE)WR.1943-5452.0000237.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 2011: On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration. Earth Interact., 15, doi:10.1175/2010EI363.1.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., Sexton D. , Barnett D. , Jones G. , Webb M. , Collins M. , and Stainforth D. , 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Yang Z. , 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 937953, doi:10.1175/JHM538.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Poulin, A., Brissette F. , Leconte R. , Arsenault R. , and Malo J.-S. , 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., Holland G. J. , Rasmussen R. M. , Done J. , Ikeda K. , Clark M. P. , and Liu C. H. , 2013: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, doi:10.1175/JCLI-D-12-00727.1.

    • Search Google Scholar
    • Export Citation
  • Raff, D., Pruitt T. , and Brekke L. , 2009: A framework for assessing flood frequency based on climate projection information. Hydrol. Earth Syst. Sci., 13, 21192136, doi:10.5194/hess-13-2119-2009.

    • Search Google Scholar
    • Export Citation
  • Rakovec, O., Hill M. C. , Clark M. P. , Weerts A. H. , Teuling A. J. , and Uijlenhoet R. , 2014: Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resour. Res., 50, 409426, doi:10.1002/2013WR014063.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Ray, A., Barsugli J. , Averyt K. , Wolter K. , Hoerling M. , Doesken N. , Udall B. , and Webb R. , 2008: Climate change in Colorado: A synthesis to support water resources management and adaptation. Intermountain West Climate Summary, Vol. 4, No. 8, Western Water Assessment, CIRES, Boulder, CO, 2–4. [Available online at http://wwa.colorado.edu/climate/iwcs/archive/IWCS_2008_Nov.pdf.]

  • Sankarasubramanian, A., and Vogel R. M. , 2002: Annual hydroclimatology of the United States. Water Resour. Res.,38, 1083, doi:10.1029/2001WR000619.

  • Schär, C., Frei C. , Lüthi D. , and Davies H. C. , 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, doi:10.1029/96GL00265.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science,316, 1181–1184, doi:10.1126/science.1139601.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stewart, I. T., Cayan D. R. , and Dettinger M. D. , 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Surfleet, C. G., Tullos D. , Chang H. , and Jung I.-W. , 2012: Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. J. Hydrol., 464–465, 233248, doi:10.1016/j.jhydrol.2012.07.012.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • USDA, 1992: Forest land distribution data for the United States. Global Change Master Directory, NASA, digital media. [Available online at http://gcmd.nasa.gov/records/GCMD_USDA_FSSFES_FOREST.html.]

  • USDA, 1994: State Soil Geographic (STATSGO) data base: Data use information. USDA Misc. Publ. 1492, 113 pp.

  • Vano, J. A., Das T. , and Lettenmaier D. P. , 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932949, doi:10.1175/JHM-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., and Coauthors, 2014: Understanding uncertainties in future Colorado River streamflow. Bull. Amer. Meteor. Soc., 95, 5978, doi:10.1175/BAMS-D-12-00228.1.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., and Coauthors, 2010: The future of hydrology: An evolving science for a changing world. Water Resour. Res., 46, W05301, doi:10.1029/2009WR008906.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2005: Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Processes,19, 3201–3219, doi:10.1002/hyp.5819.

  • Wilby, R. L., and Harris I. , 2006: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Hay L. E. , and Leavesley G. H. , 1999: A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol., 225, 6791, doi:10.1016/S0022-1694(99)00136-5.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97, 27172728, doi:10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xu, C., 1999: From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Prog. Phys. Geogr., 23, 229249, doi:10.1177/030913339902300204.

    • Search Google Scholar
    • Export Citation
  • Yadav, M., Wagener T. , and Gupta H. , 2007: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Adv. Water Resour., 30, 17561774, doi:10.1016/j.advwatres.2007.01.005.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Gupta H. V. , and Wagener T. , 2008: A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res., 44, W09417, doi:10.1029/2007WR006716.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1853 466 27
PDF Downloads 1391 381 30