Precipitation Seasonality over the Indian Subcontinent: An Evaluation of Gauge, Reanalyses, and Satellite Retrievals

Sapna Rana School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Sapna Rana in
Current site
Google Scholar
PubMed
Close
,
James McGregor School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by James McGregor in
Current site
Google Scholar
PubMed
Close
, and
James Renwick School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by James Renwick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper evaluates the seasonal (winter, premonsoon, monsoon, and postmonsoon) performance of seven precipitation products from three different sources: gridded station data, satellite-derived data, and reanalyses products over the Indian subcontinent for a period of 10 years (1997/98–2006/07). The evaluated precipitation products are the Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE), the Climate Prediction Center unified (CPC-uni), the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM) post-real-time research products (3B42-V6 and 3B42-V7), the Climate Forecast System Reanalysis (CFSR), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim). Several verification measures are employed to assess the accuracy of the data. All datasets capture the large-scale characteristics of the seasonal mean precipitation distribution, albeit with pronounced seasonal and/or regional differences. Compared to APHRODITE, the gauge-only (CPC-uni) and the satellite-derived precipitation products (GPCP, 3B42-V6, and 3B42-V7) capture the summer monsoon rainfall variability better than CFSR and ERA-Interim. Similar conclusions are drawn for the postmonsoon season, with the exception of 3B42-V7, which underestimates postmonsoon precipitation. Over mountainous regions, 3B42-V7 shows an appreciable improvement over 3B42-V6 and other gauge-based precipitation products. Significantly large biases/errors occur during the winter months, which are likely related to the uncertainty in observations that artificially inflate the existing error in reanalyses and satellite retrievals.

Corresponding author address: Sapna Rana, School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand. E-mail: sapna.rana@vuw.ac.nz

Abstract

This paper evaluates the seasonal (winter, premonsoon, monsoon, and postmonsoon) performance of seven precipitation products from three different sources: gridded station data, satellite-derived data, and reanalyses products over the Indian subcontinent for a period of 10 years (1997/98–2006/07). The evaluated precipitation products are the Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE), the Climate Prediction Center unified (CPC-uni), the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM) post-real-time research products (3B42-V6 and 3B42-V7), the Climate Forecast System Reanalysis (CFSR), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim). Several verification measures are employed to assess the accuracy of the data. All datasets capture the large-scale characteristics of the seasonal mean precipitation distribution, albeit with pronounced seasonal and/or regional differences. Compared to APHRODITE, the gauge-only (CPC-uni) and the satellite-derived precipitation products (GPCP, 3B42-V6, and 3B42-V7) capture the summer monsoon rainfall variability better than CFSR and ERA-Interim. Similar conclusions are drawn for the postmonsoon season, with the exception of 3B42-V7, which underestimates postmonsoon precipitation. Over mountainous regions, 3B42-V7 shows an appreciable improvement over 3B42-V6 and other gauge-based precipitation products. Significantly large biases/errors occur during the winter months, which are likely related to the uncertainty in observations that artificially inflate the existing error in reanalyses and satellite retrievals.

Corresponding author address: Sapna Rana, School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand. E-mail: sapna.rana@vuw.ac.nz
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., Llort X. , Liao L. , and Meneghini R. , 2004: A framework for global verification of space-borne radar estimates of precipitation based on rain type classification. 2nd TRMM Int. Science Conf., Nara, Japan, JAXA/NICT/NASA, 4 pp. [Available online at www.eorc.jaxa.jp/TRMM/museum/event/2ndTISC/HP/Extended%20Abstract/5.4_AMITAI_Eyal.pdf.]

  • Andermann, C., Bonnet S. , and Gloaguen R. , 2011: Evaluation of precipitation datasets along the Himalayan front. Geochem. Geophys. Geosyst., 12, Q07023, doi:10.1029/2011GC003513.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., Cullen H. , and Bradfield L. , 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, doi:10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and Burbank D. W. , 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, doi:10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Chen J. , Robertson F. R. , and Adler R. F. , 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol, 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Kennedy J. , Dee D. , Allan R. , and O’Neill A. , 2013: On the reprocessing and reanalysis of observations for climate. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, G. R. Asrar and J. W. Hurrell, Eds., Springer, 51–71.

  • Brunetti, M., Colacino M. , Mugeri M. , and Nanni T. , 2001: Trends in the daily intensity of precipitation in Italy from 1951 to 1996. Int. J. Climatol., 21, 299316, doi:10.1002/joc.613.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and Wang B. , 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ceccato P. , Grover-Kopec E. , Lemma M. , Connor S. J. , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa's complex topography. Int. J. Remote Sens., 28, 15031526, doi:10.1080/01431160600954688.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and Hossain F. , 2015: How well can we estimate error variance of satellite precipitation data across the world? Atmos. Res., 154, 3959, doi:10.1016/j.atmosres.2014.11.005.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and Ajaya Mohan R. S. , 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., Venugopal V. , Sengupta D. , Madhusoodanan M. S. , and Xavier P. K. , 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, doi:10.1126/science.1132027.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., Su X. , Kanamitsu M. , and Schemm J. , 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81, 26312644, doi:10.1175/1520-0477(2000)081<2631:TCOTMR>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., and Rajeevan M. , 2008: Trends in the rainfall pattern over India. Int. J. Climatol., 28, 14531469, doi:10.1002/joc.1640.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., Arakawa O. , and Yatagai A. , 2011: An automated quality control method for daily rain-gauge data. Global Environ. Res.,15 (2), 183–192. [Available online at www.airies.or.jp/attach.php/6a6f75726e616c5f31352d32656e67/save/0/0/15_2-12.pdf.]

  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109, 20802092, doi:10.1175/1520-0493(1981)109<2080:ARPCAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2014: TRMM and other data precipitation dataset documentation. NASA GSFC Rep., 42 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., Morrissey M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Nelkin E. J. , and Adler R. F. , 2011: Highlights of Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA). Proc. 5th Int. Precipitation Working Group Workshop, Hamburg, Germany, Max-Planck-Institut für Meteorologie, 109–110. [Available online at www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_100.pdf.]

  • Immerzeel, W. W., Droogers P. , de Jong S. M. , and Bierkens M. F. P. , 2009: Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ., 113, 4049, doi:10.1016/j.rse.2008.08.010.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., Rai A. , and Pandey A. , 2012: Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian region. Int. J. Climatol., 33, 2633–2648, doi:10.1002/joc.3612.

    • Search Google Scholar
    • Export Citation
  • Kar, S. C., and Rana S. , 2013: Interannual variability of winter precipitation over northwest India and adjoining region: Impact of global forcings. Theor. Appl. Climatol., 116, 609–623, doi:10.1007/s00704-013-0968-z.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Bauer P. , Turk J. , Huffman G. J. , Joyce R. , Hsu K.-L. , and Braithwaite D. , 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, doi:10.1175/JHM-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and Kumar P. , 2004: Northeast monsoon variability over south peninsular India vis-à-vis the Indian Ocean dipole mode. Int. J. Climatol., 24, 12671282, doi:10.1002/joc.1071.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and Shukla J. , 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, doi:10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., and Coauthors, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 1997: An overview of National Weather Service quantitative precipitation estimates. TDL Office Note 97-4, NOAA, Silver Spring, MD, 27 pp. [Available online at www.nws.noaa.gov/im/pub/tdl97-4.pdf.]

  • Kumar, P., Rupa Kumar K. , Rajeevan M. , and Sahai A. K. , 2007: On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dyn,28, 649–660, doi:10.1007/s00382-006-0210-0.

  • Lorenz, C., and Kunstmann H. , 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 1397–1420, doi:10.1175/JHM-D-11-088.1.

    • Search Google Scholar
    • Export Citation
  • Ma, L., Zhang T. , Frauenfeld W. O. , Ye B. , Yang D. , and Qin D. , 2009: Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res., 114, D09105, doi:10.1029/2008JD011178.

    • Search Google Scholar
    • Export Citation
  • Mahanta, R., Sama D. , and Choudhury A. , 2013: Heavy rainfall occurrences over northeast India. Int. J. Climatol., 33, 14561469, doi:10.1002/joc.3526.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., Smoliak B. V. , Lettenmaier D. P. , and Wallace J. M. , 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 7213–7217, doi:10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Misra, V., Pantina P. , Chan S. C. , and DiNapoli S. , 2012: A comparative study of the Indian monsoon hydroclimate and its variations in three reanalyses. Climate Dyn., 39, 11491168, doi:10.1007/s00382-012-1319-y.

    • Search Google Scholar
    • Export Citation
  • Nair, A., Acharya N. , Singh A. , Mohanty U. C. , and Panda T. C. , 2013: On the predictability of northeast monsoon rainfall over south peninsular India in general circulation models. Pure Appl. Geophys., 170, 19451967, doi:10.1007/s00024-012-0633-y.

    • Search Google Scholar
    • Export Citation
  • New, M., Todd M. , Hulme M. , and Jones P. , 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18891922, doi:10.1002/joc.680.

    • Search Google Scholar
    • Export Citation
  • Palazzi, E., Hardenberg J. V. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Pattanaik, D. R., and Rajeevan M. , 2010: Variability of extreme rainfall events over India during southwest monsoon season. Meteor. Appl., 17, 88104, doi:10.1002/met.164.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Krajewski W. , 1996: Satellite rainfall estimation over land. Hydrol. Sci. J., 41, 433451, doi:10.1080/02626669609491519.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., and Coauthors, 2015: Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. Int. J. Climatol., doi:10.1002/joc.4129, in press.

    • Search Google Scholar
    • Export Citation
  • Rahman, S. H., Sengupta D. , and Ravichandran M. , 2009: Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J. Geophys. Res., 114, D17113, doi:10.1029/2008JD011694.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and Bhate J. , 2009: A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale meteorological studies. Curr. Sci., 96, 558562.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., Gadgil S. , and Bhate J. , 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., Unnikrishnan C. K. , Bhate J. , Kumar N. K. , and Sreekala P. P. , 2012: Northeast monsoon over India: Variability and prediction. Meteor. Appl., 19, 226236, doi:10.1002/met.1322.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93,811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Richards, F., and Arkin P. A. , 1981: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev., 109, 10811093, doi:10.1175/1520-0493(1981)109<1081:OTRBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Rudolf, B., and Rubel F. , 2005: Global precipitation. Observed Global Climate, M. Hantel, Ed., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Vol. 6, Springer-Verlag, 11.01–11.53.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sen Roy, S. S., 2006: The impacts of ENSO, PDO, and local SSTs on winter precipitation in India. Phys. Geogr., 27, 464474, doi:10.2747/0272-3646.27.5.464.

    • Search Google Scholar
    • Export Citation
  • Sen Roy, S. S., 2009: A spatial analysis of extreme hourly precipitation patterns in India. Int. J. Climatol., 29, 345355, doi:10.1002/joc.1763.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1985: Correction of precipitation measurements: Summary report. Proc. Workshop on the Correction of Precipitation Measurements, Zurich, Switzerland, ETH/IAHS/WMO, 1323.

  • Shah, R., and Mishra V. , 2014: Evaluation of the reanalysis products for the monsoon season droughts in India. J. Hydrometeor., 15, 15751591, doi:10.1175/JHM-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and Sontakke N. A. , 1995: The annual cycle of precipitation over the Indian subcontinent: Daily, monthly and seasonal statistics. NCAR Tech. Note NCAR/TN-401+STR, 168 pp., doi:10.5065/D65M63M8.

  • Shen, Y., Xiong A. , Wang Y. , and Xie P. , 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi:10.1029/2009JD012097.

    • Search Google Scholar
    • Export Citation
  • Sohn, S. J., Tam C. Y. , Ashok K. , and Ahn J. B. , 2012: Quantifying the reliability of precipitation datasets for monitoring large-scale East Asian precipitation variations. Int. J. Climatol., 32, 1520–1526, doi:10.1002/joc.2380.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, V., and Ramamurthy K. , 1973: Northeast monsoon. Forecasting manual part IV: Comprehensive articles on selected topics, FMU Rep. IV-18.4, IMD, Pune, India. [Available online at www.imdpune.gov.in/weather_forecasting/Forecasting_Mannuals/IMD_IV-18.4.pdf.]

  • Syed, F. S., Giorgi F. , Pal J. S. , and Keay K. , 2009: Regional climate model simulation of winter climate over central–Southwest Asia, with emphasis on NAO and ENSO effects. Int. J. Climatol., 30, 220235, doi:10.1002/joc.1887.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Trenberth, K. E., Fasullo J. T. , and Mackaro J. , 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • TRMM Precipitation Radar Team, 2011: Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar algorithm instruction manual for version 7. Tech. Rep., JAXA/NASA, 170 pp. [Available online at www.eorc.jaxa.jp/TRMM/documents/PR_algorithm_product_information/pr_manual/PR_Instruction_Manual_V7_L1.pdf.]

  • Turk, F. J., Arkin P. A. , Ebert E. E. , and Sapiano M. R. P. , 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916, doi:10.1175/2008BAMS2652.1.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and Annamalai H. , 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, doi:10.1038/nclimate1495.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Ding Q. H. , 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, doi:10.1029/2005GL025347.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences. International Geophysics Series, Vol. 59, Academic Press, 464 pp.

  • Xie, P., and Coauthors, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, doi:10.1175/2769.1.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, doi:10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., and Xie P. , 2006: Utilization of a rain-gauge-based daily precipitation dataset over Asia for validation of precipitation derived from TRMM/PR and JRA25. Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions, T. N. Krishnamurti, B. N. Goswami, and T. Iwasaki, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 0604), 64040M, doi:10.1117/12.723829.

  • Yatagai, A., Xie P. , and Alpert P. , 2008: Development of a daily gridded precipitation dataset for the Middle East. Adv. Geosci., 12, 165170, doi:10.5194/adgeo-12-165-2008.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Arakawa O. , Kamiguchi K. , Kawamoto H. , Nodzu M. I. , and Hamada A. , 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137140, doi:10.2151/sola.2009-035.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Kamiguchi K. , Arakawa O. , Hamada A. , Yasutomi N. , and Kitoh A. , 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K., Hogue T. S. , Hsu K.-L. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Evaluation of rain gauge, radar and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517, doi:10.1175/JHM431.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Kornich H. , and Holmgren K. , 2013: How well do reanalyses represent the southern African precipitation? Climate Dyn., 40, 951–962, doi:10.1007/s00382-012-1423-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1725 441 27
PDF Downloads 989 196 20