Characterizing the Potential Predictability of Seasonal, Station-Based Heavy Precipitation Accumulations and Extreme Dry Spell Durations

Bruce T. Anderson Department of Earth and Environment, and The Frederick S. Pardee Center for the Study of the Longer-Range Future, Boston University, Boston, Massachusetts

Search for other papers by Bruce T. Anderson in
Current site
Google Scholar
PubMed
Close
,
Dan Gianotti Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Dan Gianotti in
Current site
Google Scholar
PubMed
Close
, and
Guido Salvucci Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Guido Salvucci in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The release of seasonal (and longer) predictions of various climatological quantities is now routine. While undoubtedly devastating to lives and livelihoods, it is unclear whether seasonal extremes in precipitation—for example, extreme dry spells leading to droughts or heavy precipitation events leading to flooding—represent a feasible target for these predictions, that is, whether they are potentially predictable or are instead inherently unpredictable more than a few days to weeks in advance. This paper assesses the potential for predicting seasonal extremes in observed precipitation as a function of region and time of year by decomposing the station-based variance into that attributable to short-memory behavior of typical meteorological events—as generated from station-specific, seasonally varying, daily time-scale stationary stochastic weather models (SSWMs)—and that attributable to longer-time-scale, potentially predictable changes in precipitation-producing processes. Findings suggest the potential for making skillful predictions of seasonal precipitation extremes over the United States is enhanced (reduced) during the cool (warm) season, particularly for heavy precipitation event accumulations. Further, this potential is accentuated along the West Coast, around the Great Lakes, and over the central plains and Ohio River valley but is diminished over the Northeast and northern Great Plains. However, findings also suggest the potential for producing seasonal (and longer) predictions of seasonal precipitation extremes is spatially and seasonally dependent. As such, this paper includes supplemental material for the potentially predictable variance of seasonal extreme dry spell lengths, heavy event accumulations, and total accumulations at 774 stations across all 365 days so readers can evaluate the potential predictability for the location, timing, and metric of most relevance to them.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0111.s1.

Corresponding author address: Bruce Anderson, Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Rm. 130, Boston, MA 02215. E-mail: brucea@bu.edu

Abstract

The release of seasonal (and longer) predictions of various climatological quantities is now routine. While undoubtedly devastating to lives and livelihoods, it is unclear whether seasonal extremes in precipitation—for example, extreme dry spells leading to droughts or heavy precipitation events leading to flooding—represent a feasible target for these predictions, that is, whether they are potentially predictable or are instead inherently unpredictable more than a few days to weeks in advance. This paper assesses the potential for predicting seasonal extremes in observed precipitation as a function of region and time of year by decomposing the station-based variance into that attributable to short-memory behavior of typical meteorological events—as generated from station-specific, seasonally varying, daily time-scale stationary stochastic weather models (SSWMs)—and that attributable to longer-time-scale, potentially predictable changes in precipitation-producing processes. Findings suggest the potential for making skillful predictions of seasonal precipitation extremes over the United States is enhanced (reduced) during the cool (warm) season, particularly for heavy precipitation event accumulations. Further, this potential is accentuated along the West Coast, around the Great Lakes, and over the central plains and Ohio River valley but is diminished over the Northeast and northern Great Plains. However, findings also suggest the potential for producing seasonal (and longer) predictions of seasonal precipitation extremes is spatially and seasonally dependent. As such, this paper includes supplemental material for the potentially predictable variance of seasonal extreme dry spell lengths, heavy event accumulations, and total accumulations at 774 stations across all 365 days so readers can evaluate the potential predictability for the location, timing, and metric of most relevance to them.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0111.s1.

Corresponding author address: Bruce Anderson, Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Rm. 130, Boston, MA 02215. E-mail: brucea@bu.edu

Supplementary Materials

    • Supplemental Materials (RAR 2.25 MB)
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Mason S. J. , 2011: Evaluation of IRI’s seasonal climate forecasts for the extreme 15% tails. Wea. Forecasting, 26, 545554, doi:10.1175/WAF-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., Van den Dool H. , and Pena M. , 2013: Short-term climate extremes: Prediction skill and predictability. J. Climate, 26, 512531, doi:10.1175/JCLI-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2000: A study of atmosphere–ocean predictability on long time scales. Climate Dyn., 16, 469477, doi:10.1007/s003820050340.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn., 23, 2944, doi:10.1007/s00382-004-0419-8.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Lambert S. J. , 2008: Multi-model decadal potential predictability of precipitation and temperature. Geophys. Res. Lett., 35, L05706, doi:10.1029/2008GL033234.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and Knutson T. , 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19, 671692, doi:10.1007/s00382-002-0254-8.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., García-Serrano J. , Lienert F. , Biescas A. P. , and Rodrigues L. R. L. , 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2000: Climate extremes: Observations, modeling and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Feng, X., DelSole T. , and Houser P. , 2011: Bootstrap estimated seasonal potential predictability of global temperature and precipitation. Geophys. Res. Lett., 38, L07702, doi:10.1029/2010GL046511.

    • Search Google Scholar
    • Export Citation
  • Findell, K., Gentine P. , Lintner B. , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434–439, doi:10.1038/ngeo1174.

  • Fowler, H. J., and Ekström M. , 2009: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol., 29, 385416, doi:10.1002/joc.1827.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and Wilby R. L. , 2010: Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Res. Res., 46, W03525, doi:10.1029/2008WR007636.

  • Gianotti, D. J., Anderson B. T. , and Salvucci G. D. , 2013: What do rain gauges tell us about the limits of precipitation predictability? J. Climate, 26, 56825688, doi:10.1175/JCLI-D-12-00718.1.

    • Search Google Scholar
    • Export Citation
  • Gianotti, D. J., Anderson B. T. , and Salvucci G. D. , 2014: The potential predictability of precipitation occurrence, intensity, and seasonal totals over the continental United States. J. Climate, 27, 69046918, doi:10.1175/JCLI-D-13-00695.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., Wigley T. M. L. , and Jones P. D. , 1993: Application of Markov models to area-average daily precipitation series and interannual variability in seasonal totals. Climate Dyn., 8, 299310, doi:10.1007/BF00209669.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Knight R. W. , 2008: Prolonged dry episodes over the conterminous United States: New tendencies emerging during the last 40 years. J. Climate, 21, 18501862, doi:10.1175/2007JCLI2013.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Knight R. W. , and Karl T. R. , 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 47–66, doi:10.1175/JHM-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336, doi:10.1175/JHM420.1.

    • Search Google Scholar
    • Export Citation
  • Hurvich, C. M., and Tsai C.-L. , 1989: Regression and time series model selection in small samples. Biometrika, 76, 297307, doi:10.1093/biomet/76.2.297.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 1995: Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inf. Syst., 9, 385403, doi:10.1080/02693799508902045.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 2007: ANUSPLIN version 4.4 user guide. Centre for Resource and Environmental Studies, Australian National University, Canberra, NSW, Australia, 52 pp. [Available online at http://fennerschool.anu.edu.au/files/anusplin44.pdf.]

  • Katz, R. W., 1977: Precipitation as a chain-dependent process. J. Appl. Meteor., 16, 671676, doi:10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and Parlange M. B. , 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11, 591601, doi:10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khalili, M., Leconte R. , and Brissette F. , 2007: Stochastic multi-site generation of daily precipitation data using spatial autocorrelation. J. Hydrometeor., 8, 396412, doi:10.1175/JHM588.1.

    • Search Google Scholar
    • Export Citation
  • Kiktev, D., Caesar J. , Alexander L. V. , Shiogama H. , and Collier M. , 2007: Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. J. Geophys. Res., 34, L10702, doi:10.1029/2007GL029539.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., Katz R. , and Rajagopalan B. , 2012: Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour. Res.,48, W01523, doi:10.1029/2011WR011105.

  • Klein Tank, A. M. G., Zwiers F. W. , and Zhang X. , 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WCDMP-72, WMO-TD 1500, 56 pp. [Available online at www.wmo.int/datastat/documents/WCDMP_72_TD_1500_en_1_1.pdf.]

  • Kogan, F. N., 1995: Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Amer. Meteor. Soc., 76, 655668, doi:10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Chen M. , Hoerling M. , and Eischeid J. , 2013: Do extreme climate events require extreme forcings? Geophys. Res. Lett., 40, 34403445, doi:10.1002/grl.50657.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., Pen P. , and Chen M. , 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142, 22202227, doi:10.1175/MWR-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Leander, R., Buishand R. A. , and Klein Tank A. M. G. , 2014: An alternative index for the contribution of precipitation on very wet days to the total precipitation. J. Climate, 27, 13651378, doi:10.1175/JCLI-D-13-00144.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1978: Predictability of climate. Nature, 276 (Suppl.), 352355, doi:10.1038/276352a0.

  • Madden, R. A., 1976: Estimates of the natural variability of time averaged sea level pressure. Mon. Wea. Rev., 104, 942952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Shea D. J. , 1978: Estimates of the natural variability of time-averaged temperatures over the United States. Mon. Wea. Rev., 106, 16951703, doi:10.1175/1520-0493(1978)106<1695:EOTNVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, W., 2004: Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901–1989. Global Planet. Change, 44, 83105, doi:10.1016/j.gloplacha.2004.06.007.

    • Search Google Scholar
    • Export Citation
  • Moron, V., Robertson A. W. , and Ward M. N. , 2006: Seasonal predictability and spatial coherence of rainfall characteristics in the tropical setting of Senegal. Mon. Wea. Rev., 134, 32483260, doi:10.1175/MWR3252.1.

    • Search Google Scholar
    • Export Citation
  • Pal, I., Anderson B. T. , Salvucci G. D. , and Gianotti D. , 2013: Shifting seasonality and increasing frequency of precipitation in wet and dry seasons across the U.S. Geophys. Res. Lett., 40, 4030–4035, doi:10.1002/grl.50760.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., Folland C. , Gruza G. , Hogg W. , Mokssit A. , and Plummer N. , 2001: Report on the activities of the working group on climate change detection and related rapporteurs 1998–2001. WCDMP-47, WMO-TD 1071, 143 pp.

  • Phillips, D., 2002: The top ten Canadian Weather Stories for 2001. CMOS Bulletin, Vol. 30, Canadian Meteorological and Oceanographic Society, Ottawa, ON, Canada, 1923.

  • Pryor, S. C., Howe J. A. , and Kunkel K. E. , 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, doi:10.1002/joc.1696.

    • Search Google Scholar
    • Export Citation
  • Reek, T., Doty S. R. , and Owen T. W. , 1992: A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull. Amer. Meteor. Soc., 73, 753762, doi:10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riebsame, W. E., Changnon S. A. , and Karl T. R. , 1990: Drought and Natural Resource Management in the United States: Impacts and Implications of the 1987–1989 Drought. Westview Press, 174 pp.

  • Robertson, A. W., Moron V. , and Swarinoto Y. , 2009: Seasonal predictability of daily rainfall statistics over Indramayu district, Indonesia. Int. J. Climatol., 29, 14491462, doi:10.1002/joc.1816.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Suarez M. J. , Pegion P. J. , Koster R. D. , and Bacmeister J. T. , 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21, 802816, doi:10.1175/2007JCLI1741.1.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and Madden R. A. , 1990: Potential for long-range prediction of monthly mean surface temperatures over North American. J. Climate, 3, 14441451, doi:10.1175/1520-0442(1990)003<1444:PFLRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, S. W., and Kripalani R. H. , 1986: Potential predictability of lower-tropospheric monsoon circulation and rainfall over India. Mon. Wea. Rev., 114, 758763, doi:10.1175/1520-0493(1986)114<0758:PPOLTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stocker, T., Field C. , Dahe Q. , Barros V. , Plattner G.-K. , Tignor M. , Midgley P. , and Ebi K. , Eds., 2010: IPCC expert meeting on detection and attribution related to anthropogenic climate change. Meeting Rep., IPCC/WMO, Geneva, Switzerland, 55 pp. [Available online at www.ipcc.ch/pdf/supporting-material/expert-meeting-detection-anthropogenic-2009-09.pdf.]

  • Swift, L. W., and Schreuder H. T. , 1981: Fitting daily precipitation amounts using the SB distribution. Mon. Wea. Rev., 109, 25352540, doi:10.1175/1520-0493(1981)109<2535:FDPAUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., Hayhoe K. , Arblaster J. M. , and Meehl G. A. , 2006: Going to the extremes. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Search Google Scholar
    • Export Citation
  • Verbist, K., Robertson A. W. , Cornelis W. M. , and Gabriels D. , 2010: Seasonal predictability of daily rainfall characteristics in central-northern Chile for dry-land management. J. Appl. Meteor. Climatol., 49, 19381955, doi:10.1175/2010JAMC2372.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Anderson B. T. , and Salvucci G. , 2006: Stochastic modeling of daily summertime rainfall over the southwestern United States. Part I: Interannual variability. J. Hydrometeor., 7, 739754, doi:10.1175/JHM518.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Anderson B. T. , and Salvucci G. , 2007: Stochastic modeling of daily summertime rainfall over the southwestern United States. Part II: Intraseasonal variability. J. Hydrometeor., 8, 938951, doi:10.1175/JHM592.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1999: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93, 153169, doi:10.1016/S0168-1923(98)00125-7.

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., Vose R. S. , Easterling D. R. , and Menne M. J. , 2006: United States historical climatology network daily temperature, precipitation, and snow data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. [Available online at http://cdiac.esd.ornl.gov/epubs/ndp/ushcn/ushcn.html.]

  • Wu, W., and Coauthors, 2012: Statistical downscaling of climate forecast system seasonal predictions for the southeastern Mediterranean. Atmos. Res., 118, 346356, doi:10.1016/j.atmosres.2012.07.019.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Zwiers F. W. , and Li G. , 2004: Monte Carlo experiments on the detection of trends in extreme values. J. Climate, 17, 19451952, doi:10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Alexander L. , Hegerl G. C. , Jones P. , Klein Tank A. , Peterson T. C. , Trewin B. , and Zwiers F. W. , 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851–870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., Nakamura H. , and Renwick J. A. , 2000: Potential predictability of seasonal means based on monthly time series of meteorological variables. J. Climate, 13, 25912604, doi:10.1175/1520-0442(2000)013<2591:PPOSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., Simmer C. , Belyaev K. , Kapala A. , and Gulev S. , 2009: Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeor., 10, 701–716, doi:10.1175/2008JHM1055.1.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., Simmer C. , Gulev S. K. , and Kollet S. , 2010: Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 37, L06704, doi:10.1029/2010GL042468.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., Simmer C. , Belyaev K. , Gulev S. K. , and Koltermann P. , 2013: Changes in the duration of European wet and dry spells during the last 60 years. J. Climate, 26, 2022–2047, doi:10.1175/JCLI-D-11-00498.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 54 3
PDF Downloads 220 29 3