Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

Liping Deng Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Liping Deng in
Current site
Google Scholar
PubMed
Close
,
Matthew F. McCabe Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Matthew F. McCabe in
Current site
Google Scholar
PubMed
Close
,
Georgiy Stenchikov Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Georgiy Stenchikov in
Current site
Google Scholar
PubMed
Close
,
Jason P. Evans Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Jason P. Evans in
Current site
Google Scholar
PubMed
Close
, and
Paul A. Kucera Research Applications Laboratory, NCAR, Boulder, Colorado

Search for other papers by Paul A. Kucera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0126.s1.

Corresponding author address: Liping Deng, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, PSE G3409, Thuwal 99354, Saudi Arabia. E-mail: liping.deng@kaust.edu.sa

Abstract

The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0126.s1.

Corresponding author address: Liping Deng, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, PSE G3409, Thuwal 99354, Saudi Arabia. E-mail: liping.deng@kaust.edu.sa

Supplementary Materials

    • Supplemental Materials (DOCX 8.33 MB)
Save
  • Al-Khalaf, A., and Basset H. A. , 2013: Diagnostic study of a severe thunderstorm over Jeddah. Atmos. Climate Sci., 3, 150164, doi:10.4236/acs.2013.31017.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2011: Sensitivity of a regional climate model (RegCM3) on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theor. Appl. Climatol., 104, 261276, doi:10.1007/s00704-010-0387-3.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., Osetinsky I. , Ziv B. , and Shafir H. , 2004: Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. Int. J. Climatol., 24, 10011011, doi:10.1002/joc.1036.

    • Search Google Scholar
    • Export Citation
  • Al Saud, M., 2010: Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. J. Water Resour. Prot., 2, 839847, doi:10.4236/jwarp.2010.29099.

    • Search Google Scholar
    • Export Citation
  • Anquetin, S., and Coauthors, 2005: The 8 and 9 September 2002 flash flood event in France: An intercomparison of operational and research meteorological models. Nat. Hazards Earth Syst. Sci., 5, 741754, doi:10.5194/nhess-5-741-2005.

    • Search Google Scholar
    • Export Citation
  • Cardoso, R. M., Soares P. M. M. , Miranda P. M. A. , and Belo-Pereira M. , 2013: WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol., 33, 25912608, doi:10.1002/joc.3616.

    • Search Google Scholar
    • Export Citation
  • Cools, J., and Coauthors, 2012: An early warning system for flash floods in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci., 12, 443457, doi:10.5194/nhess-12-443-2012.

    • Search Google Scholar
    • Export Citation
  • Davolio, S., Mastrangelo D. , Miglietta M. M. , Drofa O. , Buzzi A. , and Malguzzi P. , 2009: High resolution simulations of a flash flood near Venice. Nat. Hazards Earth Syst. Sci., 9, 16711678, doi:10.5194/nhess-9-1671-2009.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Vries, A. J., Tyrlis E. , Edry D. , Krichak S. O. , Steil B. , and Lelieveld J. , 2013: Extreme precipitation events in the Middle East: Dynamics of the active Red Sea trough. J. Geophys. Res. Atmos., 118, 70877108, doi:10.1002/jgrd.50569.

    • Search Google Scholar
    • Export Citation
  • El Kenawy, A. M., McCabe M. F. , Stenchikov G. L. , and Raj J. , 2014: Multi-decadal classification of synoptic weather types, observed trends and links to rainfall characteristics over Saudi Arabia. Front. Environ. Sci., 2, 37, doi:10.3389/fenvs.2014.00037.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and McCabe M. F. , 2010: Regional climate simulation over Australia’s Murray–Darling basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and McCabe M. F. , 2013: Effect of model resolution on a regional climate model simulation over southeast Australia. Climate Res., 56, 131145, doi:10.3354/cr01151.

    • Search Google Scholar
    • Export Citation
  • Gao, W., and Sui C.-H. , 2013: A modeling analysis of rainfall and water cycle by the cloud-resolving WRF Model over the western North Pacific. Adv. Atmos. Sci., 30, 16951711, doi:10.1007/s00376-013-2288-8.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Haggag, M., and El-Badry H. , 2013: Mesoscale numerical study of quasi-stationary convective system over Jeddah in November 2009. Atmos. Climate Sci., 3, 7386, doi:10.4236/acs.2013.31010.

    • Search Google Scholar
    • Export Citation
  • Heikkilä, U., Sandvik A. , and Sorteberg A. , 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 15511564, doi:10.1007/s00382-010-0928-6.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and Lee J. W. , 2009: Assessment of the WRF Model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818831, doi:10.1016/j.atmosres.2009.03.015.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., Delamere J. S. , Mlawer E. J. , Shephard M. W. , Clough S. A. , and Collins W. D. , 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step–mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kopparla, P., Fischer E. M. , Hannay C. , and Knutti R. , 2013: Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys. Res. Lett., 40, 58035808, doi:10.1002/2013GL057866.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., and Coauthors, 2010: Features of the Weather Modification Assessment Project in the southwest region of Saudi Arabia. J. Wea. Modif.,42, 78–103.

  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, M., Wood E. F. , Wójcik R. , Pan M. , Sheffield J. , Gao H. , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112, 430444, doi:10.1016/j.rse.2007.03.027.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Tsvieli, Y., and Zangvil A. , 2005: Synoptic climatological analysis of ‘wet’ and ‘dry’ Red Sea troughs over Israel. Int. J. Climatol., 25, 19972015, doi:10.1002/joc.1232.

    • Search Google Scholar
    • Export Citation
  • Xie, B., and Zhang F. , 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 33793394, doi:10.1175/MWR-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Dulière V. , Mote P. W. , and Salathé E. P. , 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526, doi:10.1175/2009JCLI2875.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1121 372 26
PDF Downloads 655 197 15