2DVD Data Revisited: Multifractal Insights into Cuts of the Spatiotemporal Rainfall Process

Auguste Gires Laboratoire Eau, Environnement, Systèmes Urbains, École des Ponts ParisTech, Université Paris-Est, Marne-la-Vallée, France

Search for other papers by Auguste Gires in
Current site
Google Scholar
PubMed
Close
,
Ioulia Tchiguirinskaia Laboratoire Eau, Environnement, Systèmes Urbains, École des Ponts ParisTech, Université Paris-Est, Marne-la-Vallée, France

Search for other papers by Ioulia Tchiguirinskaia in
Current site
Google Scholar
PubMed
Close
,
Daniel Schertzer Laboratoire Eau, Environnement, Systèmes Urbains, École des Ponts ParisTech, Université Paris-Est, Marne-la-Vallée, France

Search for other papers by Daniel Schertzer in
Current site
Google Scholar
PubMed
Close
, and
Alexis Berne Laboratoire de Télédétection Environnementale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data collected during four heavy rainfall events that occurred in Ardèche (France) with the help of a 2D video disdrometer (2DVD) are used to investigate the structure of the raindrop distribution in both space and time. A first type of analysis is based on the reconstruction of 36-m-height vertical rainfall columns above the measuring device. This reconstruction is obtained with the help of a ballistic hypothesis applied to 1-ms time step series. The corresponding snapshots are analyzed with the help of universal multifractals. For comparison, a similar analysis is performed on the time series with 1-ms time steps, as well as on time series of accumulation maps of N consecutive recorded drops (therefore with variable time steps). It turns out that the drop distribution exhibits a good scaling behavior in the range 0.5–36 m during the heaviest portion of the events, confirming the lack of empirical evidence of the widely used homogenous assumption for drop distribution. For smaller scales, drop positions seem to be homogeneously distributed. The notion of multifractal singularity is well illustrated by the very high-resolution time series.

Corresponding author address: Auguste Gires, École des Ponts ParisTech, LEESU, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne-La-Vallée CEDEX 2, France. E-mail: auguste.gires@leesu.enpc.fr

Abstract

Data collected during four heavy rainfall events that occurred in Ardèche (France) with the help of a 2D video disdrometer (2DVD) are used to investigate the structure of the raindrop distribution in both space and time. A first type of analysis is based on the reconstruction of 36-m-height vertical rainfall columns above the measuring device. This reconstruction is obtained with the help of a ballistic hypothesis applied to 1-ms time step series. The corresponding snapshots are analyzed with the help of universal multifractals. For comparison, a similar analysis is performed on the time series with 1-ms time steps, as well as on time series of accumulation maps of N consecutive recorded drops (therefore with variable time steps). It turns out that the drop distribution exhibits a good scaling behavior in the range 0.5–36 m during the heaviest portion of the events, confirming the lack of empirical evidence of the widely used homogenous assumption for drop distribution. For smaller scales, drop positions seem to be homogeneously distributed. The notion of multifractal singularity is well illustrated by the very high-resolution time series.

Corresponding author address: Auguste Gires, École des Ponts ParisTech, LEESU, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne-La-Vallée CEDEX 2, France. E-mail: auguste.gires@leesu.enpc.fr
Save
  • Anselmet, F., Antonia R. A. , and Danaila L. , 2001: Turbulent flows and intermittency in laboratory experiments. Planet. Space Sci., 49, 11771191, doi:10.1016/S0032-0633(01)00059-9.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Rustemeier E. , Tokay A. , Blahak U. , and Simmer C. , 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, doi:10.1175/2009JTECHA1332.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., and Coauthors, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Gokhale N. R. , 1967: Collision, coalescence, and breakup of large water drops in a vertical wind tunnel. J. Geophys. Res., 72, 40414049, doi:10.1029/JZ072i016p04041.

    • Search Google Scholar
    • Export Citation
  • de Lima, M. I. P., and Grasman J. , 1999: Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J. Hydrol., 220, 111, doi:10.1016/S0022-1694(99)00053-0.

    • Search Google Scholar
    • Export Citation
  • de Lima, M. I. P., and de Lima J. , 2009: Investigating the multifractality of point precipitation in the Madeira archipelago. Nonlinear Processes Geophys., 16, 299311, doi:10.5194/npg-16-299-2009.

    • Search Google Scholar
    • Export Citation
  • de Montera, L., Barthes L. , Mallet C. , and Gole P. , 2009: The effect of rain–no rain intermittency on the estimation of the universal multifractals model parameters. J. Hydrometeor., 10, 493506, doi:10.1175/2008JHM1040.1.

    • Search Google Scholar
    • Export Citation
  • Desaulniers-Soucy, N., Lovejoy S. , and Schertzer D. , 2001: The continuum limit in rain and the HYDROP experiment. Atmos. Res., 59–60, 163197, doi:10.1016/S0169-8095(01)00115-6.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., and Coauthors, 2014: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 1083–1100, doi:10.1175/BAMS-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Fitton, G., Tchiguirinskaia I. , Schertzer D. , and Lovejoy S. , 2011: Scaling of turbulence in the atmospheric surface-layer: Which anisotropy? J. Phys. Conf. Ser., 318, 072008, doi:10.1088/1742-6596/318/7/072008.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and Larnder C. , 1993: Scaling regimes of composite rainfall time series. Tellus,45A, 289–298, doi:10.1034/j.1600-0870.1993.t01-3-00004.x.

  • Frasson, R. P. M., da Cunha L. K. , and Krajewski W. F. , 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101, 237255, doi:10.1016/j.atmosres.2011.02.014.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., Pavone S. , and Perona G. , 2001: Errors in the estimate of the fractal correlation dimension of raindrop spatial distribution. J. Appl. Meteor., 40, 664668, doi:10.1175/1520-0450(2001)040<0664:EITEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Tchiguirinskaia I. , Schertzer D. , and Lovejoy S. , 2011: Analyses multifractales et spatio-temporelles des précipitations du modèle Méso-NH et des données radar. Hydrol. Sci. J., 56, 380396, doi:10.1080/02626667.2011.564174.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Onof C. , Maksimovic C. , Schertzer D. , Tchiguirinskaia I. , and Simoes N. , 2012: Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: A case study. J. Hydrol., 442-443, 117128, doi:10.1016/j.jhydrol.2012.04.005.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Tchiguirinskaia I. , Schertzer D. , and Lovejoy S. , 2013: Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework. Nonlinear Processes Geophys., 20, 343356, doi:10.5194/npg-20-343-2013.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Tchiguirinskaia I. , Schertzer D. , Schellart A. , Berne A. , and Lovejoy S. , 2014: Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data. Atmos. Res., 138, 125138, doi:10.1016/j.atmosres.2013.11.008.

    • Search Google Scholar
    • Export Citation
  • Hubert, P., and Coauthors, 1993: Multifractals and extreme rainfall events. Geophys. Res. Lett., 20, 931934, doi:10.1029/93GL01245.

  • Jaffrain, J., and Berne A. , 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352370, doi:10.1175/2010JHM1244.1.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and Kostinski A. B. , 1998: Fluctuation properties of precipitation. Part II: Reconsideration of the meaning and measurement of raindrop size distributions. J. Atmos. Sci., 55, 283294, doi:10.1175/1520-0469(1998)055<0283:FPOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., Kostinski A. B. , and Kruger A. , 1999: Fluctuation properties of precipitation. Part IV: Finescale clustering of drops in variable rain. J. Atmos. Sci., 56, 8291, doi:10.1175/1520-0469(1999)056<0082:FPOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung (A spectrograph for raindrops with automatic interpretation). Pure Appl. Geophys., 68, 240246, doi:10.1007/BF00874898.

    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and Jameson A. R. , 1997: Fluctuation properties of precipitation. Part I: On deviations of single-size drop counts from the Poisson distribution. J. Atmos. Sci., 54, 21742186, doi:10.1175/1520-0469(1997)054<2174:FPOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325, doi:10.1016/j.advwatres.2005.03.018.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ladoy, P., Schmitt F. , Schertzer D. , and Lovejoy S. , 1993: The multifractal temporal variability of Nimes rainfall data. C. R. Acad. Sci. Ser. II, 317 (6), 775782.

    • Search Google Scholar
    • Export Citation
  • Lavergnat, J., and Golé P. , 1998: A stochastic raindrop time distribution model. J. Appl. Meteor., 37, 805818, doi:10.1175/1520-0450(1998)037<0805:ASRTDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lazarev, A., Schertzer D. , Lovejoy S. , and Chigirinskaya Y. , 1994: Unified multifractal atmospheric dynamics tested in the tropics: Part II, vertical scaling and generalized scale invariance. Nonlinear Processes Geophys., 1, 115123, doi:10.5194/npg-1-115-1994.

    • Search Google Scholar
    • Export Citation
  • Lilley, M., Lovejoy S. , Desaulniers-Soucy N. , and Schertzer D. , 2006: Multifractal large number of drops limit in rain. J. Hydrol., 328, 2037, doi:10.1016/j.jhydrol.2005.11.063.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Schertzer D. , 1990: Fractals, raindrops and resolution dependence of rain measurements. J. Appl. Meteor., 29, 11671170, doi:10.1175/1520-0450(1990)029<1167:FRARDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Schertzer D. , 1995: Multifractals and rain. New Uncertainty Concepts in Hydrology and Hydrological Modelling, A.W. Kundzewicz, Ed., Cambridge Press, 62–103.

  • Lovejoy, S., and Schertzer D. , 2008: Turbulence, rain drops and the l1/2 number density law. New J. Phys.,10, 075017, doi:10.1088/1367-2630/10/7/075017.

  • Lovejoy, S., Duncan M. R. , and Schertzer D. , 1996: Scalar multifractal radar observer’s problem. J. Geophys. Res., 101, 26 47926 492, doi:10.1029/96JD02208.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., Schertzer D. , and Allaire V. , 2008: The remarkable wide range spatial scaling of TRMM precipitation. Atmos. Res., 90, 1032, doi:10.1016/j.atmosres.2008.02.016.

    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., Lewandowski P. , Eichinger W. E. , and Krajewski W. F. , 2009: Multiscaling analysis of high resolution space–time lidar-rainfall. Nonlinear Processes Geophys., 16, 579586, doi:10.5194/npg-16-579-2009.

    • Search Google Scholar
    • Export Citation
  • Nykanen, D. K., and Harris D. , 2003: Orographic influences on the multiscale statistical properties of precipitation. J. Geophys. Res., 108, 8381, doi:10.1029/2001JD001518.

    • Search Google Scholar
    • Export Citation
  • Olsson, J., 1995: Limits and characteristics of the multifractal behavior of a high-resolution rainfall time series. Nonlinear Processes Geophys., 2, 2329, doi:10.5194/npg-2-23-1995.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., Biaou A. , Chauvin F. , Schertzer D. , and Lovejoy S. , 2008: Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C. R. Geosci., 340, 431440, doi:10.1016/j.crte.2008.05.002.

    • Search Google Scholar
    • Export Citation
  • Salles, C., Creutin J. D. , and Sempere-Torres D. , 1998: The optical spectropluviometer revisited. J. Atmos. Oceanic Technol., 15, 12151222, doi:10.1175/1520-0426(1998)015<1215:TOSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and Lovejoy S. , 1987: Physical modelling and analysis of rain and clouds by anisotropic scaling and multiplicative processes. J. Geophys. Res., 92, 96939714, doi:10.1029/JD092iD08p09693.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and Lovejoy S. , 1997: Universal multifractals do exist!: Comments on “A Statistical analysis of mesoscale rainfall as a random cascade.” J. Appl. Meteor., 36, 12961303, doi:10.1175/1520-0450(1997)036<1296:UMDECO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and Lovejoy S. , 2011: Multifractals, generalized scale invariance and complexity in geophysics. Int. J. Bifurcation Chaos, 21, 34173456, doi:10.1142/S0218127411030647.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., Tchiguirinskaia I. , Lovejoy S. , and Hubert P. , 2010: No monsters, no miracles: In nonlinear sciences hydrology is not an outlier! Hydrol. Sci. J., 55, 965979, doi:10.1080/02626667.2010.505173.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., Tchiguirinskaia I. , and Lovejoy S. , 2012: Getting higher resolution rainfall estimates: X-band radar technology and multifractal drop distribution. IAHS Publ.,351, 105–110.

  • Tchiguirinskaia, I., Salles C. , Hubert P. , Schertzer D. , Lovejoy S. , Creutin J. D. , and Bendjoudi H. , 2003: Multifractal analysis of the OSP measured rain rates over time scales from millisecond to day. IUGG 2003, Sapporo, Japan, IUGG, JSM18/01A/B20-003.

  • Tessier, Y., Lovejoy S. , and Schertzer D. , 1993: Universal multifractals: Theory and observations for rain and clouds. J. Appl. Meteor., 32, 223250, doi:10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tessier, Y., Lovejoy S. , Hubert P. , Schertzer D. , and Pecknold S. , 1996: Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res., 101, 26 42726 440, doi:10.1029/96JD01799.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., and Bringi V. N. , 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Peterson W. A. , Tokay A. , Schutz C. , and Gatlin P. , 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, doi:10.5194/adgeo-30-3-2011.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Petersen W. A. , Gatlin P. , and Wingo M. , 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, doi:10.1175/JTECH-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., Stricker J. N. M. , Torfs P. J. J. F. , and Creutin J. D. , 1999: Towards a stochastic model of rainfall for radar hydrology: Testing the Poisson homogeneity hypothesis. Phys. Chem. Earth, Part B, 24, 747755, doi:10.1016/S1464-1909(99)00076-3.

    • Search Google Scholar
    • Export Citation
  • Verrier, S., de Montera L. , Barthes L. , and Mallet C. , 2010: Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem. J. Hydrol., 389, 111120, doi:10.1016/j.jhydrol.2010.05.035.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 75 5
PDF Downloads 136 48 2