Evaluating the Influence of Plant-Specific Physiological Parameterizations on the Partitioning of Land Surface Energy Fluxes

Mauro Sulis * Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Mauro Sulis in
Current site
Google Scholar
PubMed
Close
,
Matthias Langensiepen Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany

Search for other papers by Matthias Langensiepen in
Current site
Google Scholar
PubMed
Close
,
Prabhakar Shrestha * Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Prabhakar Shrestha in
Current site
Google Scholar
PubMed
Close
,
Anke Schickling Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Anke Schickling in
Current site
Google Scholar
PubMed
Close
,
Clemens Simmer Meteorological Institute, University of Bonn, Bonn, and Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

Search for other papers by Clemens Simmer in
Current site
Google Scholar
PubMed
Close
, and
Stefan J. Kollet Institute for Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, and Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

Search for other papers by Stefan J. Kollet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Plant physiological properties have a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature dynamics, and the rate of carbon fixation. Because of the direct impact on latent heat fluxes, these properties may also influence weather-generating processes, such as the evolution of the atmospheric boundary layer (ABL). In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the biophysical parameterization of the Terrestrial Systems Modeling Platform (TerrSysMP). The physiological parameters for two typical European midlatitudinal crops (sugar beet and winter wheat) are validated using eddy covariance fluxes over multiple years from three measurement sites located in the North Rhine–Westphalia region of Germany. Comparison with observations and a simulation utilizing the generic crop type shows clear improvements when using the crop-specific physiological characteristics of the plant. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two crops leads to an improved quantification of the diurnal energy partitioning. An independent analysis carried out using estimates of gross primary production reveals that the better agreement between observed and simulated latent heat adopting the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, a series of semi-idealized land–atmosphere coupled simulations is performed by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL using the crop-specific physiological properties, which clearly impacts the evolution of the boundary layer.

Denotes Open Access content.

Corresponding author address: Mauro Sulis, Meteorological Institute, University of Bonn, Meckenheimer Allee 176, 53115 Bonn, Germany. E-mail: msulis@uni-bonn.de

Abstract

Plant physiological properties have a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature dynamics, and the rate of carbon fixation. Because of the direct impact on latent heat fluxes, these properties may also influence weather-generating processes, such as the evolution of the atmospheric boundary layer (ABL). In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the biophysical parameterization of the Terrestrial Systems Modeling Platform (TerrSysMP). The physiological parameters for two typical European midlatitudinal crops (sugar beet and winter wheat) are validated using eddy covariance fluxes over multiple years from three measurement sites located in the North Rhine–Westphalia region of Germany. Comparison with observations and a simulation utilizing the generic crop type shows clear improvements when using the crop-specific physiological characteristics of the plant. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two crops leads to an improved quantification of the diurnal energy partitioning. An independent analysis carried out using estimates of gross primary production reveals that the better agreement between observed and simulated latent heat adopting the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, a series of semi-idealized land–atmosphere coupled simulations is performed by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL using the crop-specific physiological properties, which clearly impacts the evolution of the boundary layer.

Denotes Open Access content.

Corresponding author address: Mauro Sulis, Meteorological Institute, University of Bonn, Meckenheimer Allee 176, 53115 Bonn, Germany. E-mail: msulis@uni-bonn.de
Save
  • Arora, V. K., 2002: Modeling vegetation as a dynamic component in soil–vegetation–atmosphere transfer schemes and hydrological models. Rev. Geophys., 40, 1006, doi:10.1029/2001RG000103.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., 2003: Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric. For. Meteor., 118, 2147, doi:10.1016/S0168-1923(03)00073-X.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., Moureaux C. , Bodson B. , Dufranne D. , Heinesch B. , Suleau M. , Vancutsem F. , and Vilret A. , 2009: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. Agric. For. Meteor., 149, 407418, doi:10.1016/j.agrformet.2008.09.003.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., Seifert A. , Förstner J. , Majewski D. , Raschendorfer M. , and Reinhardt T. , 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 1994: A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agric. For. Meteor., 67, 291321, doi:10.1016/0168-1923(94)90008-6.

    • Search Google Scholar
    • Export Citation
  • Ball, J. T., Woodrow I. E. , and Berry J. A. , 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggens, Ed., Springer, 221–224.

  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97, 18 52318 532, doi:10.1029/91JD03172.

  • Betts, R. A., Cox P. M. , Lee S. L. , and Woodward F. I. , 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387, 796799, doi:10.1038/42924.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Levis S. , Kergoat L. , and Oleson K. W. , 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochem. Cycles, 16, 1021, doi:10.1029/2000GB001360.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Lawrence P. J. , Oleson K. W. , Levis S. , Jung M. , Reichstein M. , Lawrence D. M. , and Swenson S. C. , 2011: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, doi:10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., Oleson K. W. , Fisher R. A. , Lasslop G. , and Reichstein M. , 2012: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. J. Geophys. Res.,117, G02026, doi:10.1029/2011JG001913.

  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Buckley, T. N., 2005: The control of stomata by water balance. New Phytol., 168, 275292, doi:10.1111/j.1469-8137.2005.01543.x.

  • Chen, H., Dickinson R. E. , Dai Y. , and Zhou L. , 2011: Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Climate Dyn., 36, 10371054, doi:10.1007/s00382-010-0741-2.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and de Noblet-Ducoudré N. , 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, doi:10.1175/2009JCLI3102.1.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., Gervois S. , Ciais P. , Viovy N. , Brisson N. , Seguin B. , and Perrier A. , 2004: Coupling the Soil–Vegetation–Atmosphere–Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie,24, 397–407, doi:10.1051/agro:2004038.

  • Douville, H., Planton S. , Royer J.-F. , Stephenson D. B. , Tyteca S. , Kergoat L. , Lafont S. , and Betts R. A. , 2000: Importance of vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res., 105, 14 84114 861, doi:10.1029/1999JD901086.

    • Search Google Scholar
    • Export Citation
  • Fiorani, F., and Schurr U. , 2013: Future scenarios for plant phenotyping. Annu. Rev. Plant Biol., 64, 267291, doi:10.1146/annurev-arplant-050312-120137.

    • Search Google Scholar
    • Export Citation
  • Foley, A., and Coauthors, 2005: Global consequences of land use. Science, 309, 570574, doi:10.1126/science.1111772.

  • Franks, P. J., Drake P. L. , and Froend R. H. , 2007: Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ., 30, 1930, doi:10.1111/j.1365-3040.2006.01600.x.

    • Search Google Scholar
    • Export Citation
  • Friend, A. D., and Coauthors, 2007: FLUXNET and modelling the global carbon cycle. Global Change Biol., 13, 610633, doi:10.1111/j.1365-2486.2006.01223.x.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., Parker D. J. , Taylor C. M. , Reeves C. E. , and Murphy J. G. , 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res.,115, D03102, doi:10.1029/2009JD012811.

  • Gayler, S., Ingwersen J. , Priesack E. , Wöhling T. , Wulfmeyer V. , and Streck T. , 2013: Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: Comparison with field data and crop model simulations. Environ. Earth Sci., 69, 415427, doi:10.1007/s12665-013-2309-z.

    • Search Google Scholar
    • Export Citation
  • Gayler, S., and Coauthors, 2014: Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resour. Res., 50, 13371356, doi:10.1002/2013WR014634.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., Miguez-Macho G. , Steyaert L. T. , and Weaver C. P. , 2009: Climatic effects of 30 years of landscape change over the greater Phoenix, Arizona, region: 1. Surface energy budget changes. J. Geophys. Res.,114, D05110, doi:10.1029/2008JD010745.

  • Göhler, M., Mai J. , and Cuntz M. , 2013: Use of eigendecomposition in a parameter sensitivity analysis of the Community Land Model. J. Geophys. Res. Biogeosci., 118, 904921, doi:10.1002/jgrg.20072.

    • Search Google Scholar
    • Export Citation
  • Graf, A., Werner J. , Langensiepen M. , van de Boer A. , Schmidt M. , Kupisch M. , and Vereecken H. , 2013: Validation of a minimum microclimate disturbance chamber for net ecosystem flux measurements. Agric. For. Meteor., 174–175, 114, doi:10.1016/j.agrformet.2013.02.001.

    • Search Google Scholar
    • Export Citation
  • Haugland, M. J., and Crawford K. C. , 2005: The diurnal cycle of land–atmosphere interactions across Oklahoma’s winter wheat belt. Mon. Wea. Rev., 133, 120130, doi:10.1175/MWR-2842.1.

    • Search Google Scholar
    • Export Citation
  • Hay, R. K. M., and Porter J. R. , 2006: The Physiology of Crop Yield. Blackwell Publishing, 330 pp.

  • Humbert, S., Subedi S. , Cohn J. , Zeng B. , Bi Y. M. , and Chen X. , 2013: Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics, 14, doi:10.1186/1471-2164-14-3.

    • Search Google Scholar
    • Export Citation
  • Ingwersen, J., and Coauthors, 2011: Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric. For. Meteor., 151, 345355, doi:10.1016/j.agrformet.2010.11.010.

    • Search Google Scholar
    • Export Citation
  • IUSS, 2006: World Reference Base for Soil Resources 2006. FAO Tech. Rep. 103, 128 pp.

  • Jones, J. E., and Woodward C. S. , 2001: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resour., 24, 763774, doi:10.1016/S0309-1708(00)00075-0.

    • Search Google Scholar
    • Export Citation
  • Kattge, J., Knorr W. , Raddatz T. , and Wirth C. , 2009: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol., 15, 976991, doi:10.1111/j.1365-2486.2008.01744.x.

    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and Maxwell R. M. , 2006: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, 945958, doi:10.1016/j.advwatres.2005.08.006.

    • Search Google Scholar
    • Export Citation
  • Kothavala, Z., Arain M. A. , Black T. A. , and Verseghy D. , 2005: The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS). Agric. For. Meteor., 133, 89108, doi:10.1016/j.agrformet.2005.08.007.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825, doi:10.1029/1999GB001138.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., Snyder M. S. , and Sloan L. C. , 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett.,34, L03703, doi:10.1029/2006GL028679.

  • Lawlor, D. W., 2002: Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. J. Exp. Bot., 53, 773787, doi:10.1093/jexbot/53.370.773.

    • Search Google Scholar
    • Export Citation
  • Levis, S., Bonan G. B. , Kluzek E. , Thornton P. E. , Jones A. , Sacks W. J. , and Kucharik C. J. , 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land–atmosphere fluxes. J. Climate, 25, 48394859, doi:10.1175/JCLI-D-11-00446.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., and Taylor J. A. , 1994: On the temperature dependence of soil respiration. Funct. Ecol., 8, 315323, doi:10.2307/2389824.

  • Lu, X., Wang Y.-P. , Ziehn T. , and Dai Y. , 2013: An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface model (CABLE). Agric. For. Meteor., 182–183, 292303, doi:10.1016/j.agrformet.2013.04.003.

    • Search Google Scholar
    • Export Citation
  • Mahecha, M. D., and Coauthors, 2010: Comparing observations and process-based simulations of biosphere–atmosphere exchanges on multiple timescale. J. Geophys. Res.,115, G02003, doi:10.1029/2009JG001016.

  • Mauder, M., Cuntz M. , Drüe C. , Graf A. , Rebmann C. , Schmid H. P. , Schmidt M. , and Steinbrecher R. , 2013: A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteor., 169, 122135, doi:10.1016/j.agrformet.2012.09.006.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Stensrud D. J. , 2005: Influences of a winter wheat belt on the evolution of the boundary layer. Mon. Wea. Rev., 133, 21782199, doi:10.1175/MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., Stensrud D. J. , and Crawford K. C. , 2004: The impact of Oklahoma’s winter wheat belt on the mesoscale environment. Mon. Wea. Rev., 132, 405421, doi:10.1175/1520-0493(2004)132<0405:TIOOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monteith, J., and Unsworth M. , 2013: Principles of Environmental Physics. Academic Press, 422 pp.

  • Morales, P., and Coauthors, 2005: Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biol., 11, 22112233, doi:10.1111/j.1365-2486.2005.01036.x.

    • Search Google Scholar
    • Export Citation
  • Moureaux, C., Debacq A. , Bodson B. , Heinesch B. , and Aubinet M. , 2006: Annual net ecosystem carbon exchange by a sugar beet crop. Agric. For. Meteor., 139, 2539, doi:10.1016/j.agrformet.2006.05.009.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., and Running S. W. , 1996: Implementation of a hierarchical global vegetation classification in ecosystem function models. J. Veg. Sci., 7, 337346, doi:10.2307/3236277.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.,116, D12109, doi:10.1029/2010JD015139.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res.,113, G01021, doi:10.1029/2007JG000563.

  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Prihodko, L., Denning A. , Hanan N. , Baker I. , and Davis K. , 2008: Sensitivity, uncertainty and time dependence of parameters in a complex land surface model. Agric. For. Meteor., 148, 268287, doi:10.1016/j.agrformet.2007.08.006.

    • Search Google Scholar
    • Export Citation
  • Raab, T. K., and Norman T. , 1994: Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol., 105, 11591166.

    • Search Google Scholar
    • Export Citation
  • Reynolds, O., 1894: On the dynamical theory of incompressible viscous fluid and the determination of the criterion. Proc. Roy. Soc. London, 56A, 4045, doi:10.1098/rspl.1894.0075.

    • Search Google Scholar
    • Export Citation
  • Richardson, A. D., and Hollinger D. Y. , 2005: Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models. Agric. For. Meteor., 131, 191208, doi:10.1016/j.agrformet.2005.05.008.

    • Search Google Scholar
    • Export Citation
  • Sack, L., Cornwell W. K. , Santiago L. S. , Barbour M. M. , Choat B. , Evans J. R. , Munns R. , and Nicotra A. , 2010: A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Funct. Plant Biol., 37, 687693, doi:10.1071/FP10097.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W. K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, doi:10.1175/2009JHM1066.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Schickling, A., and Coauthors, 2010: The influence of leaf photosynthetic efficiency and stomatal closure on canopy carbon uptake and evapotranspiration—A model study in wheat and sugar beet. Biogeosci. Discuss., 7, 71317172, doi:10.5194/bgd-7-7131-2010.

    • Search Google Scholar
    • Export Citation
  • Schomburg, A., Venema V. , Lindau R. , Ament F. , and Simmer C. , 2010: A downscaling scheme for atmospheric variables to drive soil–vegetation–atmosphere transfer models. Tellus, 62 (4), 242258, doi:10.1111/j.1600-0889.2010.00466.x.

    • Search Google Scholar
    • Export Citation
  • Schomburg, A., Venema V. , Ament F. , and Simmer C. , 2012: Disaggregation of screen-level variables in a numerical weather prediction model with an explicit simulation of subgrid-scale land-surface heterogeneity. Meteor. Atmos. Phys., 116, 8194, doi:10.1007/s00703-012-0183-y.

    • Search Google Scholar
    • Export Citation
  • Schulze, E.-D., Kelliher F. M. , Korner C. , Lloyd J. , and Ray L. , 1994: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst., 25, 629660, doi:10.1146/annurev.es.25.110194.003213.

    • Search Google Scholar
    • Export Citation
  • Schwinger, J., Kollet S. J. , Hoppe C. , and Elbern H. , 2010: Sensitivity of latent heat fluxes to initial values and parameters of a land-surface model. Vadose Zone J., 9, 9841001, doi:10.2136/vzj2009.0190.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Los S. O. , Tucker C. J. , Justice C. O. , Dazlich D. A. , Collatz G. J. , and Randall D. A. , 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737, doi:10.1175/1520-0442(1996)009<0706:ARLSPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shrestha, P., Sulis M. , Masbou M. , Kollet S. J. , and Simmer C. , 2014: A scale-consistent Terrestrial Systems Modeling Platform based on COSMO, CLM, and ParFlow. Mon. Wea. Rev., 142, 34663483, doi:10.1175/MWR-D-14-00029.1.

    • Search Google Scholar
    • Export Citation
  • Simmer, C., and Coauthors, 2015: Monitoring and modeling the terrestrial system from pores to catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00134.1, in press.

    • Search Google Scholar
    • Export Citation
  • Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res.,113, G01025, doi:10.1029/2007JG000562.

  • Suyker, A. E., and Verma S. B. , 2009: Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agric. For. Meteor., 149, 443452, doi:10.1016/j.agrformet.2008.09.010.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Zimmermann N. E. , 2007: An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Climate, 20, 39023923, doi:10.1175/JCLI4222.1.

    • Search Google Scholar
    • Export Citation
  • Tsvetsinskaya, E. A., Mearns L. O. , and Easterling W. E. , 2001: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part II: Atmospheric response to crop growth and development. J. Climate, 14, 711729, doi:10.1175/1520-0442(2001)014<0711:ITEOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, doi:10.5194/gmd-6-373-2013.

    • Search Google Scholar
    • Export Citation
  • Van den Hoof, C., Hanert E. , and Vidale P. L. , 2011: Simulating dynamic crop growth with an adapted land surface model—JULES–SUCROS: Model development and validation. Agric. For. Meteor., 151, 137153, doi:10.1016/j.agrformet.2010.09.011.

    • Search Google Scholar
    • Export Citation
  • Van Wittenberghe, S., and Coauthors, 2013: Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ. Pollut., 173, 2937, doi:10.1016/j.envpol.2012.10.003.

    • Search Google Scholar
    • Export Citation
  • von Caemmerer, S., 2000: Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, 165 pp.

  • Wesseling, J. G., Elbers J. A. , Kabat P. , and den Broek B. J. V. , 1991: SWATRE: Instructions for input. Winand Staring Centre Internal Note, Wageningen, Netherlands.

  • White, J. W., 2009: Bringing genetics and genomics to crop simulations: Experiences with wheat, sorghum and common bean in solving the GEM-to-P problem. Crop Modeling and Decision Support, W. Cao, E. Wang, and J. W. White, Eds., Springer, 44–53.

  • White, M. A., Thornton P. E. , Running S. W. , and Nemani R. R. , 2000: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interact., 4, doi:10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, doi:10.1016/S0168-1923(02)00109-0.

    • Search Google Scholar
    • Export Citation
  • Wöhling, T., and Coauthors, 2013: Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil–plant models and CLM3.5. Water Resour. Res., 49, 82008221, doi:10.1002/2013WR014536.

    • Search Google Scholar
    • Export Citation
  • Wullschleger, S. D., 1993: Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot., 44, 907920, doi:10.1093/jxb/44.5.907.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Shaikh M. , Dai Y. , Dickinson R. E. , and Myneni R. , 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15, 18321854, doi:10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 470 177 6
PDF Downloads 218 43 3